Metamath Proof Explorer


Theorem pntibnd

Description: Lemma for pnt . Establish smallness of R on an interval. Lemma 10.6.2 in Shapiro, p. 436. (Contributed by Mario Carneiro, 10-Apr-2016)

Ref Expression
Hypothesis pntlem1.r R = a + ψ a a
Assertion pntibnd c + l 0 1 e 0 1 x + k e c e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e

Proof

Step Hyp Ref Expression
1 pntlem1.r R = a + ψ a a
2 1 pntrmax d + x + R x x d
3 1 pntpbnd b + f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f
4 reeanv d + b + x + R x x d f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f d + x + R x x d b + f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f
5 2rp 2 +
6 rpmulcl 2 + b + 2 b +
7 5 6 mpan b + 2 b +
8 2re 2
9 1lt2 1 < 2
10 rplogcl 2 1 < 2 log 2 +
11 8 9 10 mp2an log 2 +
12 rpaddcl 2 b + log 2 + 2 b + log 2 +
13 7 11 12 sylancl b + 2 b + log 2 +
14 13 ad2antlr d + b + x + R x x d f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f 2 b + log 2 +
15 id d + d +
16 eqid 1 4 d + 3 = 1 4 d + 3
17 1 15 16 pntibndlem1 d + 1 4 d + 3 0 1
18 17 ad2antrr d + b + x + R x x d f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f 1 4 d + 3 0 1
19 elioore e 0 1 e
20 eliooord e 0 1 0 < e e < 1
21 20 simpld e 0 1 0 < e
22 19 21 elrpd e 0 1 e +
23 22 rphalfcld e 0 1 e 2 +
24 23 rpred e 0 1 e 2
25 23 rpgt0d e 0 1 0 < e 2
26 1red e 0 1 1
27 rphalflt e + e 2 < e
28 22 27 syl e 0 1 e 2 < e
29 20 simprd e 0 1 e < 1
30 24 19 26 28 29 lttrd e 0 1 e 2 < 1
31 0xr 0 *
32 1xr 1 *
33 elioo2 0 * 1 * e 2 0 1 e 2 0 < e 2 e 2 < 1
34 31 32 33 mp2an e 2 0 1 e 2 0 < e 2 e 2 < 1
35 24 25 30 34 syl3anbrc e 0 1 e 2 0 1
36 35 adantl d + b + x + R x x d e 0 1 e 2 0 1
37 oveq2 f = e 2 b f = b e 2
38 37 fveq2d f = e 2 e b f = e b e 2
39 38 oveq1d f = e 2 e b f +∞ = e b e 2 +∞
40 breq2 f = e 2 R n n f R n n e 2
41 40 anbi2d f = e 2 v < n n m v R n n f v < n n m v R n n e 2
42 41 rexbidv f = e 2 n v < n n m v R n n f n v < n n m v R n n e 2
43 42 ralbidv f = e 2 v g +∞ n v < n n m v R n n f v g +∞ n v < n n m v R n n e 2
44 39 43 raleqbidv f = e 2 m e b f +∞ v g +∞ n v < n n m v R n n f m e b e 2 +∞ v g +∞ n v < n n m v R n n e 2
45 44 rexbidv f = e 2 g + m e b f +∞ v g +∞ n v < n n m v R n n f g + m e b e 2 +∞ v g +∞ n v < n n m v R n n e 2
46 45 rspcv e 2 0 1 f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f g + m e b e 2 +∞ v g +∞ n v < n n m v R n n e 2
47 36 46 syl d + b + x + R x x d e 0 1 f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f g + m e b e 2 +∞ v g +∞ n v < n n m v R n n e 2
48 simp-4l d + b + x + R x x d e 0 1 g + m e b e 2 +∞ v g +∞ n v < n n m v R n n e 2 d +
49 simpllr d + b + x + R x x d e 0 1 g + m e b e 2 +∞ v g +∞ n v < n n m v R n n e 2 x + R x x d
50 simplr d + b + x + R x x d b +
51 50 ad2antrr d + b + x + R x x d e 0 1 g + m e b e 2 +∞ v g +∞ n v < n n m v R n n e 2 b +
52 eqid e b e 2 = e b e 2
53 eqid 2 b + log 2 = 2 b + log 2
54 simplr d + b + x + R x x d e 0 1 g + m e b e 2 +∞ v g +∞ n v < n n m v R n n e 2 e 0 1
55 simprl d + b + x + R x x d e 0 1 g + m e b e 2 +∞ v g +∞ n v < n n m v R n n e 2 g +
56 simprr d + b + x + R x x d e 0 1 g + m e b e 2 +∞ v g +∞ n v < n n m v R n n e 2 m e b e 2 +∞ v g +∞ n v < n n m v R n n e 2
57 1 48 16 49 51 52 53 54 55 56 pntibndlem3 d + b + x + R x x d e 0 1 g + m e b e 2 +∞ v g +∞ n v < n n m v R n n e 2 x + k e 2 b + log 2 e +∞ y x +∞ z + y < z 1 + 1 4 d + 3 e z < k y u z 1 + 1 4 d + 3 e z R u u e
58 57 rexlimdvaa d + b + x + R x x d e 0 1 g + m e b e 2 +∞ v g +∞ n v < n n m v R n n e 2 x + k e 2 b + log 2 e +∞ y x +∞ z + y < z 1 + 1 4 d + 3 e z < k y u z 1 + 1 4 d + 3 e z R u u e
59 47 58 syld d + b + x + R x x d e 0 1 f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f x + k e 2 b + log 2 e +∞ y x +∞ z + y < z 1 + 1 4 d + 3 e z < k y u z 1 + 1 4 d + 3 e z R u u e
60 59 ralrimdva d + b + x + R x x d f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f e 0 1 x + k e 2 b + log 2 e +∞ y x +∞ z + y < z 1 + 1 4 d + 3 e z < k y u z 1 + 1 4 d + 3 e z R u u e
61 60 impr d + b + x + R x x d f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f e 0 1 x + k e 2 b + log 2 e +∞ y x +∞ z + y < z 1 + 1 4 d + 3 e z < k y u z 1 + 1 4 d + 3 e z R u u e
62 fvoveq1 c = 2 b + log 2 e c e = e 2 b + log 2 e
63 62 oveq1d c = 2 b + log 2 e c e +∞ = e 2 b + log 2 e +∞
64 63 raleqdv c = 2 b + log 2 k e c e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e k e 2 b + log 2 e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e
65 64 rexbidv c = 2 b + log 2 x + k e c e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e x + k e 2 b + log 2 e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e
66 65 ralbidv c = 2 b + log 2 e 0 1 x + k e c e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e e 0 1 x + k e 2 b + log 2 e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e
67 oveq1 l = 1 4 d + 3 l e = 1 4 d + 3 e
68 67 oveq2d l = 1 4 d + 3 1 + l e = 1 + 1 4 d + 3 e
69 68 oveq1d l = 1 4 d + 3 1 + l e z = 1 + 1 4 d + 3 e z
70 69 breq1d l = 1 4 d + 3 1 + l e z < k y 1 + 1 4 d + 3 e z < k y
71 70 anbi2d l = 1 4 d + 3 y < z 1 + l e z < k y y < z 1 + 1 4 d + 3 e z < k y
72 69 oveq2d l = 1 4 d + 3 z 1 + l e z = z 1 + 1 4 d + 3 e z
73 72 raleqdv l = 1 4 d + 3 u z 1 + l e z R u u e u z 1 + 1 4 d + 3 e z R u u e
74 71 73 anbi12d l = 1 4 d + 3 y < z 1 + l e z < k y u z 1 + l e z R u u e y < z 1 + 1 4 d + 3 e z < k y u z 1 + 1 4 d + 3 e z R u u e
75 74 rexbidv l = 1 4 d + 3 z + y < z 1 + l e z < k y u z 1 + l e z R u u e z + y < z 1 + 1 4 d + 3 e z < k y u z 1 + 1 4 d + 3 e z R u u e
76 75 ralbidv l = 1 4 d + 3 y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e y x +∞ z + y < z 1 + 1 4 d + 3 e z < k y u z 1 + 1 4 d + 3 e z R u u e
77 76 rexralbidv l = 1 4 d + 3 x + k e 2 b + log 2 e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e x + k e 2 b + log 2 e +∞ y x +∞ z + y < z 1 + 1 4 d + 3 e z < k y u z 1 + 1 4 d + 3 e z R u u e
78 77 ralbidv l = 1 4 d + 3 e 0 1 x + k e 2 b + log 2 e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e e 0 1 x + k e 2 b + log 2 e +∞ y x +∞ z + y < z 1 + 1 4 d + 3 e z < k y u z 1 + 1 4 d + 3 e z R u u e
79 66 78 rspc2ev 2 b + log 2 + 1 4 d + 3 0 1 e 0 1 x + k e 2 b + log 2 e +∞ y x +∞ z + y < z 1 + 1 4 d + 3 e z < k y u z 1 + 1 4 d + 3 e z R u u e c + l 0 1 e 0 1 x + k e c e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e
80 14 18 61 79 syl3anc d + b + x + R x x d f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f c + l 0 1 e 0 1 x + k e c e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e
81 80 ex d + b + x + R x x d f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f c + l 0 1 e 0 1 x + k e c e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e
82 81 rexlimivv d + b + x + R x x d f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f c + l 0 1 e 0 1 x + k e c e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e
83 4 82 sylbir d + x + R x x d b + f 0 1 g + m e b f +∞ v g +∞ n v < n n m v R n n f c + l 0 1 e 0 1 x + k e c e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e
84 2 3 83 mp2an c + l 0 1 e 0 1 x + k e c e +∞ y x +∞ z + y < z 1 + l e z < k y u z 1 + l e z R u u e