| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntlem1.r |
|
| 2 |
1
|
pntrmax |
|
| 3 |
1
|
pntpbnd |
|
| 4 |
|
reeanv |
|
| 5 |
|
2rp |
|
| 6 |
|
rpmulcl |
|
| 7 |
5 6
|
mpan |
|
| 8 |
|
2re |
|
| 9 |
|
1lt2 |
|
| 10 |
|
rplogcl |
|
| 11 |
8 9 10
|
mp2an |
|
| 12 |
|
rpaddcl |
|
| 13 |
7 11 12
|
sylancl |
|
| 14 |
13
|
ad2antlr |
|
| 15 |
|
id |
|
| 16 |
|
eqid |
|
| 17 |
1 15 16
|
pntibndlem1 |
|
| 18 |
17
|
ad2antrr |
|
| 19 |
|
elioore |
|
| 20 |
|
eliooord |
|
| 21 |
20
|
simpld |
|
| 22 |
19 21
|
elrpd |
|
| 23 |
22
|
rphalfcld |
|
| 24 |
23
|
rpred |
|
| 25 |
23
|
rpgt0d |
|
| 26 |
|
1red |
|
| 27 |
|
rphalflt |
|
| 28 |
22 27
|
syl |
|
| 29 |
20
|
simprd |
|
| 30 |
24 19 26 28 29
|
lttrd |
|
| 31 |
|
0xr |
|
| 32 |
|
1xr |
|
| 33 |
|
elioo2 |
|
| 34 |
31 32 33
|
mp2an |
|
| 35 |
24 25 30 34
|
syl3anbrc |
|
| 36 |
35
|
adantl |
|
| 37 |
|
oveq2 |
|
| 38 |
37
|
fveq2d |
|
| 39 |
38
|
oveq1d |
|
| 40 |
|
breq2 |
|
| 41 |
40
|
anbi2d |
|
| 42 |
41
|
rexbidv |
|
| 43 |
42
|
ralbidv |
|
| 44 |
39 43
|
raleqbidv |
|
| 45 |
44
|
rexbidv |
|
| 46 |
45
|
rspcv |
|
| 47 |
36 46
|
syl |
|
| 48 |
|
simp-4l |
|
| 49 |
|
simpllr |
|
| 50 |
|
simplr |
|
| 51 |
50
|
ad2antrr |
|
| 52 |
|
eqid |
|
| 53 |
|
eqid |
|
| 54 |
|
simplr |
|
| 55 |
|
simprl |
|
| 56 |
|
simprr |
|
| 57 |
1 48 16 49 51 52 53 54 55 56
|
pntibndlem3 |
|
| 58 |
57
|
rexlimdvaa |
|
| 59 |
47 58
|
syld |
|
| 60 |
59
|
ralrimdva |
|
| 61 |
60
|
impr |
|
| 62 |
|
fvoveq1 |
|
| 63 |
62
|
oveq1d |
|
| 64 |
63
|
raleqdv |
|
| 65 |
64
|
rexbidv |
|
| 66 |
65
|
ralbidv |
|
| 67 |
|
oveq1 |
|
| 68 |
67
|
oveq2d |
|
| 69 |
68
|
oveq1d |
|
| 70 |
69
|
breq1d |
|
| 71 |
70
|
anbi2d |
|
| 72 |
69
|
oveq2d |
|
| 73 |
72
|
raleqdv |
|
| 74 |
71 73
|
anbi12d |
|
| 75 |
74
|
rexbidv |
|
| 76 |
75
|
ralbidv |
|
| 77 |
76
|
rexralbidv |
|
| 78 |
77
|
ralbidv |
|
| 79 |
66 78
|
rspc2ev |
|
| 80 |
14 18 61 79
|
syl3anc |
|
| 81 |
80
|
ex |
|
| 82 |
81
|
rexlimivv |
|
| 83 |
4 82
|
sylbir |
|
| 84 |
2 3 83
|
mp2an |
|