| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntlem1.r |
|
| 2 |
|
pntlem1.a |
|
| 3 |
|
pntlem1.b |
|
| 4 |
|
pntlem1.l |
|
| 5 |
|
pntlem1.d |
|
| 6 |
|
pntlem1.f |
|
| 7 |
|
ioossre |
|
| 8 |
7 4
|
sselid |
|
| 9 |
|
eliooord |
|
| 10 |
4 9
|
syl |
|
| 11 |
10
|
simpld |
|
| 12 |
8 11
|
elrpd |
|
| 13 |
|
1rp |
|
| 14 |
|
rpaddcl |
|
| 15 |
2 13 14
|
sylancl |
|
| 16 |
5 15
|
eqeltrid |
|
| 17 |
|
1re |
|
| 18 |
|
ltaddrp |
|
| 19 |
17 2 18
|
sylancr |
|
| 20 |
2
|
rpcnd |
|
| 21 |
|
ax-1cn |
|
| 22 |
|
addcom |
|
| 23 |
20 21 22
|
sylancl |
|
| 24 |
5 23
|
eqtrid |
|
| 25 |
19 24
|
breqtrrd |
|
| 26 |
16
|
recgt1d |
|
| 27 |
25 26
|
mpbid |
|
| 28 |
16
|
rprecred |
|
| 29 |
|
difrp |
|
| 30 |
28 17 29
|
sylancl |
|
| 31 |
27 30
|
mpbid |
|
| 32 |
|
3nn0 |
|
| 33 |
|
2nn |
|
| 34 |
32 33
|
decnncl |
|
| 35 |
|
nnrp |
|
| 36 |
34 35
|
ax-mp |
|
| 37 |
|
rpmulcl |
|
| 38 |
36 3 37
|
sylancr |
|
| 39 |
12 38
|
rpdivcld |
|
| 40 |
|
2z |
|
| 41 |
|
rpexpcl |
|
| 42 |
16 40 41
|
sylancl |
|
| 43 |
39 42
|
rpdivcld |
|
| 44 |
31 43
|
rpmulcld |
|
| 45 |
6 44
|
eqeltrid |
|
| 46 |
12 16 45
|
3jca |
|