Metamath Proof Explorer


Theorem pntlemd

Description: Lemma for pnt . Closure for the constants used in the proof. For comparison with Equation 10.6.27 of Shapiro, p. 434, A is C^*, B is c_1, L is λ, D is c_2, and F is c_3. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
Assertion pntlemd φL+D+F+

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 ioossre 01
8 7 4 sselid φL
9 eliooord L010<LL<1
10 4 9 syl φ0<LL<1
11 10 simpld φ0<L
12 8 11 elrpd φL+
13 1rp 1+
14 rpaddcl A+1+A+1+
15 2 13 14 sylancl φA+1+
16 5 15 eqeltrid φD+
17 1re 1
18 ltaddrp 1A+1<1+A
19 17 2 18 sylancr φ1<1+A
20 2 rpcnd φA
21 ax-1cn 1
22 addcom A1A+1=1+A
23 20 21 22 sylancl φA+1=1+A
24 5 23 eqtrid φD=1+A
25 19 24 breqtrrd φ1<D
26 16 recgt1d φ1<D1D<1
27 25 26 mpbid φ1D<1
28 16 rprecred φ1D
29 difrp 1D11D<111D+
30 28 17 29 sylancl φ1D<111D+
31 27 30 mpbid φ11D+
32 3nn0 30
33 2nn 2
34 32 33 decnncl 32
35 nnrp 3232+
36 34 35 ax-mp 32+
37 rpmulcl 32+B+32B+
38 36 3 37 sylancr φ32B+
39 12 38 rpdivcld φL32B+
40 2z 2
41 rpexpcl D+2D2+
42 16 40 41 sylancl φD2+
43 39 42 rpdivcld φL32BD2+
44 31 43 rpmulcld φ11DL32BD2+
45 6 44 eqeltrid φF+
46 12 16 45 3jca φL+D+F+