Metamath Proof Explorer


Theorem pntlemc

Description: Lemma for pnt . Closure for the constants used in the proof. For comparison with Equation 10.6.27 of Shapiro, p. 434, U is α, E is ε, and K isK. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r R=a+ψaa
pntlem1.a φA+
pntlem1.b φB+
pntlem1.l φL01
pntlem1.d D=A+1
pntlem1.f F=11DL32BD2
pntlem1.u φU+
pntlem1.u2 φUA
pntlem1.e E=UD
pntlem1.k K=eBE
Assertion pntlemc φE+K+E011<KUE+

Proof

Step Hyp Ref Expression
1 pntlem1.r R=a+ψaa
2 pntlem1.a φA+
3 pntlem1.b φB+
4 pntlem1.l φL01
5 pntlem1.d D=A+1
6 pntlem1.f F=11DL32BD2
7 pntlem1.u φU+
8 pntlem1.u2 φUA
9 pntlem1.e E=UD
10 pntlem1.k K=eBE
11 1 2 3 4 5 6 pntlemd φL+D+F+
12 11 simp2d φD+
13 7 12 rpdivcld φUD+
14 9 13 eqeltrid φE+
15 3 14 rpdivcld φBE+
16 15 rpred φBE
17 16 rpefcld φeBE+
18 10 17 eqeltrid φK+
19 14 rpred φE
20 14 rpgt0d φ0<E
21 7 rpred φU
22 2 rpred φA
23 12 rpred φD
24 22 ltp1d φA<A+1
25 24 5 breqtrrdi φA<D
26 21 22 23 8 25 lelttrd φU<D
27 12 rpcnd φD
28 27 mulridd φD1=D
29 26 28 breqtrrd φU<D1
30 1red φ1
31 21 30 12 ltdivmuld φUD<1U<D1
32 29 31 mpbird φUD<1
33 9 32 eqbrtrid φE<1
34 0xr 0*
35 1xr 1*
36 elioo2 0*1*E01E0<EE<1
37 34 35 36 mp2an E01E0<EE<1
38 19 20 33 37 syl3anbrc φE01
39 efgt1 BE+1<eBE
40 15 39 syl φ1<eBE
41 40 10 breqtrrdi φ1<K
42 1re 1
43 ltaddrp 1A+1<1+A
44 42 2 43 sylancr φ1<1+A
45 7 rpcnne0d φUU0
46 divid UU0UU=1
47 45 46 syl φUU=1
48 2 rpcnd φA
49 ax-1cn 1
50 addcom A1A+1=1+A
51 48 49 50 sylancl φA+1=1+A
52 5 51 eqtrid φD=1+A
53 44 47 52 3brtr4d φUU<D
54 21 7 12 53 ltdiv23d φUD<U
55 9 54 eqbrtrid φE<U
56 difrp EUE<UUE+
57 19 21 56 syl2anc φE<UUE+
58 55 57 mpbid φUE+
59 38 41 58 3jca φE011<KUE+
60 14 18 59 3jca φE+K+E011<KUE+