| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntlem1.r |
|
| 2 |
|
pntlem1.a |
|
| 3 |
|
pntlem1.b |
|
| 4 |
|
pntlem1.l |
|
| 5 |
|
pntlem1.d |
|
| 6 |
|
pntlem1.f |
|
| 7 |
|
pntlem1.u |
|
| 8 |
|
pntlem1.u2 |
|
| 9 |
|
pntlem1.e |
|
| 10 |
|
pntlem1.k |
|
| 11 |
1 2 3 4 5 6
|
pntlemd |
|
| 12 |
11
|
simp2d |
|
| 13 |
7 12
|
rpdivcld |
|
| 14 |
9 13
|
eqeltrid |
|
| 15 |
3 14
|
rpdivcld |
|
| 16 |
15
|
rpred |
|
| 17 |
16
|
rpefcld |
|
| 18 |
10 17
|
eqeltrid |
|
| 19 |
14
|
rpred |
|
| 20 |
14
|
rpgt0d |
|
| 21 |
7
|
rpred |
|
| 22 |
2
|
rpred |
|
| 23 |
12
|
rpred |
|
| 24 |
22
|
ltp1d |
|
| 25 |
24 5
|
breqtrrdi |
|
| 26 |
21 22 23 8 25
|
lelttrd |
|
| 27 |
12
|
rpcnd |
|
| 28 |
27
|
mulridd |
|
| 29 |
26 28
|
breqtrrd |
|
| 30 |
|
1red |
|
| 31 |
21 30 12
|
ltdivmuld |
|
| 32 |
29 31
|
mpbird |
|
| 33 |
9 32
|
eqbrtrid |
|
| 34 |
|
0xr |
|
| 35 |
|
1xr |
|
| 36 |
|
elioo2 |
|
| 37 |
34 35 36
|
mp2an |
|
| 38 |
19 20 33 37
|
syl3anbrc |
|
| 39 |
|
efgt1 |
|
| 40 |
15 39
|
syl |
|
| 41 |
40 10
|
breqtrrdi |
|
| 42 |
|
1re |
|
| 43 |
|
ltaddrp |
|
| 44 |
42 2 43
|
sylancr |
|
| 45 |
7
|
rpcnne0d |
|
| 46 |
|
divid |
|
| 47 |
45 46
|
syl |
|
| 48 |
2
|
rpcnd |
|
| 49 |
|
ax-1cn |
|
| 50 |
|
addcom |
|
| 51 |
48 49 50
|
sylancl |
|
| 52 |
5 51
|
eqtrid |
|
| 53 |
44 47 52
|
3brtr4d |
|
| 54 |
21 7 12 53
|
ltdiv23d |
|
| 55 |
9 54
|
eqbrtrid |
|
| 56 |
|
difrp |
|
| 57 |
19 21 56
|
syl2anc |
|
| 58 |
55 57
|
mpbid |
|
| 59 |
38 41 58
|
3jca |
|
| 60 |
14 18 59
|
3jca |
|