| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r | ⊢ 𝑅  =  ( 𝑎  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑎 )  −  𝑎 ) ) | 
						
							| 2 |  | pntlem1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 3 |  | pntlem1.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 4 |  | pntlem1.l | ⊢ ( 𝜑  →  𝐿  ∈  ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d | ⊢ 𝐷  =  ( 𝐴  +  1 ) | 
						
							| 6 |  | pntlem1.f | ⊢ 𝐹  =  ( ( 1  −  ( 1  /  𝐷 ) )  ·  ( ( 𝐿  /  ( ; 3 2  ·  𝐵 ) )  /  ( 𝐷 ↑ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u | ⊢ ( 𝜑  →  𝑈  ∈  ℝ+ ) | 
						
							| 8 |  | pntlem1.u2 | ⊢ ( 𝜑  →  𝑈  ≤  𝐴 ) | 
						
							| 9 |  | pntlem1.e | ⊢ 𝐸  =  ( 𝑈  /  𝐷 ) | 
						
							| 10 |  | pntlem1.k | ⊢ 𝐾  =  ( exp ‘ ( 𝐵  /  𝐸 ) ) | 
						
							| 11 | 1 2 3 4 5 6 | pntlemd | ⊢ ( 𝜑  →  ( 𝐿  ∈  ℝ+  ∧  𝐷  ∈  ℝ+  ∧  𝐹  ∈  ℝ+ ) ) | 
						
							| 12 | 11 | simp2d | ⊢ ( 𝜑  →  𝐷  ∈  ℝ+ ) | 
						
							| 13 | 7 12 | rpdivcld | ⊢ ( 𝜑  →  ( 𝑈  /  𝐷 )  ∈  ℝ+ ) | 
						
							| 14 | 9 13 | eqeltrid | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 15 | 3 14 | rpdivcld | ⊢ ( 𝜑  →  ( 𝐵  /  𝐸 )  ∈  ℝ+ ) | 
						
							| 16 | 15 | rpred | ⊢ ( 𝜑  →  ( 𝐵  /  𝐸 )  ∈  ℝ ) | 
						
							| 17 | 16 | rpefcld | ⊢ ( 𝜑  →  ( exp ‘ ( 𝐵  /  𝐸 ) )  ∈  ℝ+ ) | 
						
							| 18 | 10 17 | eqeltrid | ⊢ ( 𝜑  →  𝐾  ∈  ℝ+ ) | 
						
							| 19 | 14 | rpred | ⊢ ( 𝜑  →  𝐸  ∈  ℝ ) | 
						
							| 20 | 14 | rpgt0d | ⊢ ( 𝜑  →  0  <  𝐸 ) | 
						
							| 21 | 7 | rpred | ⊢ ( 𝜑  →  𝑈  ∈  ℝ ) | 
						
							| 22 | 2 | rpred | ⊢ ( 𝜑  →  𝐴  ∈  ℝ ) | 
						
							| 23 | 12 | rpred | ⊢ ( 𝜑  →  𝐷  ∈  ℝ ) | 
						
							| 24 | 22 | ltp1d | ⊢ ( 𝜑  →  𝐴  <  ( 𝐴  +  1 ) ) | 
						
							| 25 | 24 5 | breqtrrdi | ⊢ ( 𝜑  →  𝐴  <  𝐷 ) | 
						
							| 26 | 21 22 23 8 25 | lelttrd | ⊢ ( 𝜑  →  𝑈  <  𝐷 ) | 
						
							| 27 | 12 | rpcnd | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 28 | 27 | mulridd | ⊢ ( 𝜑  →  ( 𝐷  ·  1 )  =  𝐷 ) | 
						
							| 29 | 26 28 | breqtrrd | ⊢ ( 𝜑  →  𝑈  <  ( 𝐷  ·  1 ) ) | 
						
							| 30 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 31 | 21 30 12 | ltdivmuld | ⊢ ( 𝜑  →  ( ( 𝑈  /  𝐷 )  <  1  ↔  𝑈  <  ( 𝐷  ·  1 ) ) ) | 
						
							| 32 | 29 31 | mpbird | ⊢ ( 𝜑  →  ( 𝑈  /  𝐷 )  <  1 ) | 
						
							| 33 | 9 32 | eqbrtrid | ⊢ ( 𝜑  →  𝐸  <  1 ) | 
						
							| 34 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 35 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 36 |  | elioo2 | ⊢ ( ( 0  ∈  ℝ*  ∧  1  ∈  ℝ* )  →  ( 𝐸  ∈  ( 0 (,) 1 )  ↔  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸  ∧  𝐸  <  1 ) ) ) | 
						
							| 37 | 34 35 36 | mp2an | ⊢ ( 𝐸  ∈  ( 0 (,) 1 )  ↔  ( 𝐸  ∈  ℝ  ∧  0  <  𝐸  ∧  𝐸  <  1 ) ) | 
						
							| 38 | 19 20 33 37 | syl3anbrc | ⊢ ( 𝜑  →  𝐸  ∈  ( 0 (,) 1 ) ) | 
						
							| 39 |  | efgt1 | ⊢ ( ( 𝐵  /  𝐸 )  ∈  ℝ+  →  1  <  ( exp ‘ ( 𝐵  /  𝐸 ) ) ) | 
						
							| 40 | 15 39 | syl | ⊢ ( 𝜑  →  1  <  ( exp ‘ ( 𝐵  /  𝐸 ) ) ) | 
						
							| 41 | 40 10 | breqtrrdi | ⊢ ( 𝜑  →  1  <  𝐾 ) | 
						
							| 42 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 43 |  | ltaddrp | ⊢ ( ( 1  ∈  ℝ  ∧  𝐴  ∈  ℝ+ )  →  1  <  ( 1  +  𝐴 ) ) | 
						
							| 44 | 42 2 43 | sylancr | ⊢ ( 𝜑  →  1  <  ( 1  +  𝐴 ) ) | 
						
							| 45 | 7 | rpcnne0d | ⊢ ( 𝜑  →  ( 𝑈  ∈  ℂ  ∧  𝑈  ≠  0 ) ) | 
						
							| 46 |  | divid | ⊢ ( ( 𝑈  ∈  ℂ  ∧  𝑈  ≠  0 )  →  ( 𝑈  /  𝑈 )  =  1 ) | 
						
							| 47 | 45 46 | syl | ⊢ ( 𝜑  →  ( 𝑈  /  𝑈 )  =  1 ) | 
						
							| 48 | 2 | rpcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 49 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 50 |  | addcom | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝐴  +  1 )  =  ( 1  +  𝐴 ) ) | 
						
							| 51 | 48 49 50 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  +  1 )  =  ( 1  +  𝐴 ) ) | 
						
							| 52 | 5 51 | eqtrid | ⊢ ( 𝜑  →  𝐷  =  ( 1  +  𝐴 ) ) | 
						
							| 53 | 44 47 52 | 3brtr4d | ⊢ ( 𝜑  →  ( 𝑈  /  𝑈 )  <  𝐷 ) | 
						
							| 54 | 21 7 12 53 | ltdiv23d | ⊢ ( 𝜑  →  ( 𝑈  /  𝐷 )  <  𝑈 ) | 
						
							| 55 | 9 54 | eqbrtrid | ⊢ ( 𝜑  →  𝐸  <  𝑈 ) | 
						
							| 56 |  | difrp | ⊢ ( ( 𝐸  ∈  ℝ  ∧  𝑈  ∈  ℝ )  →  ( 𝐸  <  𝑈  ↔  ( 𝑈  −  𝐸 )  ∈  ℝ+ ) ) | 
						
							| 57 | 19 21 56 | syl2anc | ⊢ ( 𝜑  →  ( 𝐸  <  𝑈  ↔  ( 𝑈  −  𝐸 )  ∈  ℝ+ ) ) | 
						
							| 58 | 55 57 | mpbid | ⊢ ( 𝜑  →  ( 𝑈  −  𝐸 )  ∈  ℝ+ ) | 
						
							| 59 | 38 41 58 | 3jca | ⊢ ( 𝜑  →  ( 𝐸  ∈  ( 0 (,) 1 )  ∧  1  <  𝐾  ∧  ( 𝑈  −  𝐸 )  ∈  ℝ+ ) ) | 
						
							| 60 | 14 18 59 | 3jca | ⊢ ( 𝜑  →  ( 𝐸  ∈  ℝ+  ∧  𝐾  ∈  ℝ+  ∧  ( 𝐸  ∈  ( 0 (,) 1 )  ∧  1  <  𝐾  ∧  ( 𝑈  −  𝐸 )  ∈  ℝ+ ) ) ) |