| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 2 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 3 |  | df-ioo | ⊢ (,)  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  <  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 4 |  | df-ico | ⊢ [,)  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  <  𝑦 ) } ) | 
						
							| 5 |  | xrltletr | ⊢ ( ( 1  ∈  ℝ*  ∧  2  ∈  ℝ*  ∧  𝑤  ∈  ℝ* )  →  ( ( 1  <  2  ∧  2  ≤  𝑤 )  →  1  <  𝑤 ) ) | 
						
							| 6 | 3 4 5 | ixxss1 | ⊢ ( ( 1  ∈  ℝ*  ∧  1  <  2 )  →  ( 2 [,) +∞ )  ⊆  ( 1 (,) +∞ ) ) | 
						
							| 7 | 1 2 6 | mp2an | ⊢ ( 2 [,) +∞ )  ⊆  ( 1 (,) +∞ ) | 
						
							| 8 |  | resmpt | ⊢ ( ( 2 [,) +∞ )  ⊆  ( 1 (,) +∞ )  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) ) )  ↾  ( 2 [,) +∞ ) )  =  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 9 | 7 8 | mp1i | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) ) )  ↾  ( 2 [,) +∞ ) )  =  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 10 | 7 | sseli | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  𝑥  ∈  ( 1 (,) +∞ ) ) | 
						
							| 11 |  | ioossre | ⊢ ( 1 (,) +∞ )  ⊆  ℝ | 
						
							| 12 | 11 | sseli | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 13 | 10 12 | syl | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 14 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 15 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 16 |  | elico2 | ⊢ ( ( 2  ∈  ℝ  ∧  +∞  ∈  ℝ* )  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  2  ≤  𝑥  ∧  𝑥  <  +∞ ) ) ) | 
						
							| 17 | 14 15 16 | mp2an | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  2  ≤  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 18 | 17 | simp2bi | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  2  ≤  𝑥 ) | 
						
							| 19 |  | chtrpcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  2  ≤  𝑥 )  →  ( θ ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 20 | 13 18 19 | syl2anc | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( θ ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 21 |  | 0red | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  0  ∈  ℝ ) | 
						
							| 22 |  | 1red | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  1  ∈  ℝ ) | 
						
							| 23 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 24 | 23 | a1i | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  0  <  1 ) | 
						
							| 25 |  | eliooord | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 26 | 25 | simpld | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  1  <  𝑥 ) | 
						
							| 27 | 21 22 12 24 26 | lttrd | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  0  <  𝑥 ) | 
						
							| 28 | 12 27 | elrpd | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 29 | 10 28 | syl | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 30 | 20 29 | rpdivcld | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( θ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( θ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 32 |  | ppinncl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  2  ≤  𝑥 )  →  ( π ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 33 | 13 18 32 | syl2anc | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( π ‘ 𝑥 )  ∈  ℕ ) | 
						
							| 34 | 33 | nnrpd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( π ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 35 | 12 26 | rplogcld | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( log ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 36 | 10 35 | syl | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( log ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 37 | 34 36 | rpmulcld | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  ∈  ℝ+ ) | 
						
							| 38 | 20 37 | rpdivcld | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( θ ‘ 𝑥 )  /  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  ∈  ℝ+ ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( θ ‘ 𝑥 )  /  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  ∈  ℝ+ ) | 
						
							| 40 | 29 | ssriv | ⊢ ( 2 [,) +∞ )  ⊆  ℝ+ | 
						
							| 41 |  | resmpt | ⊢ ( ( 2 [,) +∞ )  ⊆  ℝ+  →  ( ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ↾  ( 2 [,) +∞ ) )  =  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) ) ) | 
						
							| 42 | 40 41 | ax-mp | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ↾  ( 2 [,) +∞ ) )  =  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 43 |  | pnt2 | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ⇝𝑟  1 | 
						
							| 44 |  | rlimres | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ⇝𝑟  1  →  ( ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ↾  ( 2 [,) +∞ ) )  ⇝𝑟  1 ) | 
						
							| 45 | 43 44 | mp1i | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ↾  ( 2 [,) +∞ ) )  ⇝𝑟  1 ) | 
						
							| 46 | 42 45 | eqbrtrrid | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ⇝𝑟  1 ) | 
						
							| 47 |  | chtppilim | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( θ ‘ 𝑥 )  /  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) )  ⇝𝑟  1 | 
						
							| 48 | 47 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( θ ‘ 𝑥 )  /  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) )  ⇝𝑟  1 ) | 
						
							| 49 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 50 | 49 | a1i | ⊢ ( ⊤  →  1  ≠  0 ) | 
						
							| 51 | 38 | rpne0d | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( θ ‘ 𝑥 )  /  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  ≠  0 ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( θ ‘ 𝑥 )  /  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  ≠  0 ) | 
						
							| 53 | 31 39 46 48 50 52 | rlimdiv | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ( θ ‘ 𝑥 )  /  𝑥 )  /  ( ( θ ‘ 𝑥 )  /  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) ) )  ⇝𝑟  ( 1  /  1 ) ) | 
						
							| 54 | 13 | recnd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  𝑥  ∈  ℂ ) | 
						
							| 55 |  | chtcl | ⊢ ( 𝑥  ∈  ℝ  →  ( θ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 56 | 12 55 | syl | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( θ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 57 | 56 | recnd | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( θ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 58 | 10 57 | syl | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( θ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 59 | 54 58 | mulcomd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( 𝑥  ·  ( θ ‘ 𝑥 ) )  =  ( ( θ ‘ 𝑥 )  ·  𝑥 ) ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( ( θ ‘ 𝑥 )  ·  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  ( 𝑥  ·  ( θ ‘ 𝑥 ) ) )  =  ( ( ( θ ‘ 𝑥 )  ·  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  ( ( θ ‘ 𝑥 )  ·  𝑥 ) ) ) | 
						
							| 61 | 37 | rpcnd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 62 | 29 | rpne0d | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  𝑥  ≠  0 ) | 
						
							| 63 | 20 | rpne0d | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( θ ‘ 𝑥 )  ≠  0 ) | 
						
							| 64 | 61 54 58 62 63 | divcan5d | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( ( θ ‘ 𝑥 )  ·  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  ( ( θ ‘ 𝑥 )  ·  𝑥 ) )  =  ( ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  𝑥 ) ) | 
						
							| 65 | 60 64 | eqtrd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( ( θ ‘ 𝑥 )  ·  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  ( 𝑥  ·  ( θ ‘ 𝑥 ) ) )  =  ( ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  𝑥 ) ) | 
						
							| 66 | 37 | rpne0d | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  ≠  0 ) | 
						
							| 67 | 58 54 58 61 62 66 63 | divdivdivd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( ( θ ‘ 𝑥 )  /  𝑥 )  /  ( ( θ ‘ 𝑥 )  /  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) )  =  ( ( ( θ ‘ 𝑥 )  ·  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  ( 𝑥  ·  ( θ ‘ 𝑥 ) ) ) ) | 
						
							| 68 | 33 | nncnd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( π ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 69 | 36 | rpcnd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 70 | 36 | rpne0d | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( log ‘ 𝑥 )  ≠  0 ) | 
						
							| 71 | 68 54 69 62 70 | divdiv2d | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) )  =  ( ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  𝑥 ) ) | 
						
							| 72 | 65 67 71 | 3eqtr4d | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( ( θ ‘ 𝑥 )  /  𝑥 )  /  ( ( θ ‘ 𝑥 )  /  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) )  =  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 73 | 72 | mpteq2ia | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ( θ ‘ 𝑥 )  /  𝑥 )  /  ( ( θ ‘ 𝑥 )  /  ( ( π ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) ) )  =  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 74 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 75 | 53 73 74 | 3brtr3g | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) ) )  ⇝𝑟  1 ) | 
						
							| 76 | 9 75 | eqbrtrd | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) ) )  ↾  ( 2 [,) +∞ ) )  ⇝𝑟  1 ) | 
						
							| 77 |  | ppicl | ⊢ ( 𝑥  ∈  ℝ  →  ( π ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 78 | 12 77 | syl | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( π ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 79 | 78 | nn0red | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( π ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 80 | 28 35 | rpdivcld | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( 𝑥  /  ( log ‘ 𝑥 ) )  ∈  ℝ+ ) | 
						
							| 81 | 79 80 | rerpdivcld | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 82 | 81 | recnd | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 83 | 82 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 84 | 83 | fmpttd | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) ) ) : ( 1 (,) +∞ ) ⟶ ℂ ) | 
						
							| 85 | 11 | a1i | ⊢ ( ⊤  →  ( 1 (,) +∞ )  ⊆  ℝ ) | 
						
							| 86 | 14 | a1i | ⊢ ( ⊤  →  2  ∈  ℝ ) | 
						
							| 87 | 84 85 86 | rlimresb | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) ) )  ⇝𝑟  1  ↔  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) ) )  ↾  ( 2 [,) +∞ ) )  ⇝𝑟  1 ) ) | 
						
							| 88 | 76 87 | mpbird | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) ) )  ⇝𝑟  1 ) | 
						
							| 89 | 88 | mptru | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( π ‘ 𝑥 )  /  ( 𝑥  /  ( log ‘ 𝑥 ) ) ) )  ⇝𝑟  1 |