Metamath Proof Explorer


Theorem pnt

Description: The Prime Number Theorem: the number of prime numbers less than x tends asymptotically to x / log ( x ) as x goes to infinity. This is Metamath 100 proof #5. (Contributed by Mario Carneiro, 1-Jun-2016)

Ref Expression
Assertion pnt x1+∞π_xxlogx1

Proof

Step Hyp Ref Expression
1 1xr 1*
2 1lt2 1<2
3 df-ioo .=x*,y*z*|x<zz<y
4 df-ico .=x*,y*z*|xzz<y
5 xrltletr 1*2*w*1<22w1<w
6 3 4 5 ixxss1 1*1<22+∞1+∞
7 1 2 6 mp2an 2+∞1+∞
8 resmpt 2+∞1+∞x1+∞π_xxlogx2+∞=x2+∞π_xxlogx
9 7 8 mp1i x1+∞π_xxlogx2+∞=x2+∞π_xxlogx
10 7 sseli x2+∞x1+∞
11 ioossre 1+∞
12 11 sseli x1+∞x
13 10 12 syl x2+∞x
14 2re 2
15 pnfxr +∞*
16 elico2 2+∞*x2+∞x2xx<+∞
17 14 15 16 mp2an x2+∞x2xx<+∞
18 17 simp2bi x2+∞2x
19 chtrpcl x2xθx+
20 13 18 19 syl2anc x2+∞θx+
21 0red x1+∞0
22 1red x1+∞1
23 0lt1 0<1
24 23 a1i x1+∞0<1
25 eliooord x1+∞1<xx<+∞
26 25 simpld x1+∞1<x
27 21 22 12 24 26 lttrd x1+∞0<x
28 12 27 elrpd x1+∞x+
29 10 28 syl x2+∞x+
30 20 29 rpdivcld x2+∞θxx+
31 30 adantl x2+∞θxx+
32 ppinncl x2xπ_x
33 13 18 32 syl2anc x2+∞π_x
34 33 nnrpd x2+∞π_x+
35 12 26 rplogcld x1+∞logx+
36 10 35 syl x2+∞logx+
37 34 36 rpmulcld x2+∞π_xlogx+
38 20 37 rpdivcld x2+∞θxπ_xlogx+
39 38 adantl x2+∞θxπ_xlogx+
40 29 ssriv 2+∞+
41 resmpt 2+∞+x+θxx2+∞=x2+∞θxx
42 40 41 ax-mp x+θxx2+∞=x2+∞θxx
43 pnt2 x+θxx1
44 rlimres x+θxx1x+θxx2+∞1
45 43 44 mp1i x+θxx2+∞1
46 42 45 eqbrtrrid x2+∞θxx1
47 chtppilim x2+∞θxπ_xlogx1
48 47 a1i x2+∞θxπ_xlogx1
49 ax-1ne0 10
50 49 a1i 10
51 38 rpne0d x2+∞θxπ_xlogx0
52 51 adantl x2+∞θxπ_xlogx0
53 31 39 46 48 50 52 rlimdiv x2+∞θxxθxπ_xlogx11
54 13 recnd x2+∞x
55 chtcl xθx
56 12 55 syl x1+∞θx
57 56 recnd x1+∞θx
58 10 57 syl x2+∞θx
59 54 58 mulcomd x2+∞xθx=θxx
60 59 oveq2d x2+∞θxπ_xlogxxθx=θxπ_xlogxθxx
61 37 rpcnd x2+∞π_xlogx
62 29 rpne0d x2+∞x0
63 20 rpne0d x2+∞θx0
64 61 54 58 62 63 divcan5d x2+∞θxπ_xlogxθxx=π_xlogxx
65 60 64 eqtrd x2+∞θxπ_xlogxxθx=π_xlogxx
66 37 rpne0d x2+∞π_xlogx0
67 58 54 58 61 62 66 63 divdivdivd x2+∞θxxθxπ_xlogx=θxπ_xlogxxθx
68 33 nncnd x2+∞π_x
69 36 rpcnd x2+∞logx
70 36 rpne0d x2+∞logx0
71 68 54 69 62 70 divdiv2d x2+∞π_xxlogx=π_xlogxx
72 65 67 71 3eqtr4d x2+∞θxxθxπ_xlogx=π_xxlogx
73 72 mpteq2ia x2+∞θxxθxπ_xlogx=x2+∞π_xxlogx
74 1div1e1 11=1
75 53 73 74 3brtr3g x2+∞π_xxlogx1
76 9 75 eqbrtrd x1+∞π_xxlogx2+∞1
77 ppicl xπ_x0
78 12 77 syl x1+∞π_x0
79 78 nn0red x1+∞π_x
80 28 35 rpdivcld x1+∞xlogx+
81 79 80 rerpdivcld x1+∞π_xxlogx
82 81 recnd x1+∞π_xxlogx
83 82 adantl x1+∞π_xxlogx
84 83 fmpttd x1+∞π_xxlogx:1+∞
85 11 a1i 1+∞
86 14 a1i 2
87 84 85 86 rlimresb x1+∞π_xxlogx1x1+∞π_xxlogx2+∞1
88 76 87 mpbird x1+∞π_xxlogx1
89 88 mptru x1+∞π_xxlogx1