Metamath Proof Explorer


Theorem pnt2

Description: The Prime Number Theorem, version 2: the first Chebyshev function tends asymptotically to x . (Contributed by Mario Carneiro, 1-Jun-2016)

Ref Expression
Assertion pnt2 x + θ x x 1

Proof

Step Hyp Ref Expression
1 2re 2
2 elicopnf 2 x 2 +∞ x 2 x
3 1 2 ax-mp x 2 +∞ x 2 x
4 chprpcl x 2 x ψ x +
5 3 4 sylbi x 2 +∞ ψ x +
6 3 simplbi x 2 +∞ x
7 0red x 2 +∞ 0
8 1 a1i x 2 +∞ 2
9 2pos 0 < 2
10 9 a1i x 2 +∞ 0 < 2
11 3 simprbi x 2 +∞ 2 x
12 7 8 6 10 11 ltletrd x 2 +∞ 0 < x
13 6 12 elrpd x 2 +∞ x +
14 5 13 rpdivcld x 2 +∞ ψ x x +
15 14 adantl x 2 +∞ ψ x x +
16 chtrpcl x 2 x θ x +
17 3 16 sylbi x 2 +∞ θ x +
18 5 17 rpdivcld x 2 +∞ ψ x θ x +
19 18 adantl x 2 +∞ ψ x θ x +
20 13 ssriv 2 +∞ +
21 20 a1i 2 +∞ +
22 pnt3 x + ψ x x 1
23 22 a1i x + ψ x x 1
24 21 23 rlimres2 x 2 +∞ ψ x x 1
25 chpchtlim x 2 +∞ ψ x θ x 1
26 25 a1i x 2 +∞ ψ x θ x 1
27 ax-1ne0 1 0
28 27 a1i 1 0
29 19 rpne0d x 2 +∞ ψ x θ x 0
30 15 19 24 26 28 29 rlimdiv x 2 +∞ ψ x x ψ x θ x 1 1
31 rpre x + x
32 chpcl x ψ x
33 31 32 syl x + ψ x
34 33 recnd x + ψ x
35 13 34 syl x 2 +∞ ψ x
36 13 rpcnne0d x 2 +∞ x x 0
37 5 rpcnne0d x 2 +∞ ψ x ψ x 0
38 17 rpcnne0d x 2 +∞ θ x θ x 0
39 divdivdiv ψ x x x 0 ψ x ψ x 0 θ x θ x 0 ψ x x ψ x θ x = ψ x θ x x ψ x
40 35 36 37 38 39 syl22anc x 2 +∞ ψ x x ψ x θ x = ψ x θ x x ψ x
41 6 recnd x 2 +∞ x
42 41 35 mulcomd x 2 +∞ x ψ x = ψ x x
43 42 oveq2d x 2 +∞ ψ x θ x x ψ x = ψ x θ x ψ x x
44 chtcl x θ x
45 31 44 syl x + θ x
46 45 recnd x + θ x
47 13 46 syl x 2 +∞ θ x
48 divcan5 θ x x x 0 ψ x ψ x 0 ψ x θ x ψ x x = θ x x
49 47 36 37 48 syl3anc x 2 +∞ ψ x θ x ψ x x = θ x x
50 40 43 49 3eqtrd x 2 +∞ ψ x x ψ x θ x = θ x x
51 50 mpteq2ia x 2 +∞ ψ x x ψ x θ x = x 2 +∞ θ x x
52 resmpt 2 +∞ + x + θ x x 2 +∞ = x 2 +∞ θ x x
53 20 52 ax-mp x + θ x x 2 +∞ = x 2 +∞ θ x x
54 51 53 eqtr4i x 2 +∞ ψ x x ψ x θ x = x + θ x x 2 +∞
55 1div1e1 1 1 = 1
56 30 54 55 3brtr3g x + θ x x 2 +∞ 1
57 rerpdivcl θ x x + θ x x
58 45 57 mpancom x + θ x x
59 58 adantl x + θ x x
60 59 recnd x + θ x x
61 60 fmpttd x + θ x x : +
62 rpssre +
63 62 a1i +
64 1 a1i 2
65 61 63 64 rlimresb x + θ x x 1 x + θ x x 2 +∞ 1
66 56 65 mpbird x + θ x x 1
67 66 mptru x + θ x x 1