| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimresb.1 |
|
| 2 |
|
rlimresb.2 |
|
| 3 |
|
rlimresb.3 |
|
| 4 |
|
rlimcl |
|
| 5 |
4
|
a1i |
|
| 6 |
|
rlimcl |
|
| 7 |
6
|
a1i |
|
| 8 |
2
|
adantr |
|
| 9 |
|
simprrl |
|
| 10 |
8 9
|
sseldd |
|
| 11 |
3
|
adantr |
|
| 12 |
|
elicopnf |
|
| 13 |
3 12
|
syl |
|
| 14 |
13
|
biimpa |
|
| 15 |
14
|
adantrr |
|
| 16 |
15
|
simpld |
|
| 17 |
15
|
simprd |
|
| 18 |
|
simprrr |
|
| 19 |
11 16 10 17 18
|
letrd |
|
| 20 |
|
elicopnf |
|
| 21 |
11 20
|
syl |
|
| 22 |
10 19 21
|
mpbir2and |
|
| 23 |
22
|
anassrs |
|
| 24 |
23
|
anassrs |
|
| 25 |
|
biimt |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
pm5.74da |
|
| 28 |
|
bi2.04 |
|
| 29 |
27 28
|
bitrdi |
|
| 30 |
29
|
pm5.74da |
|
| 31 |
|
elin |
|
| 32 |
31
|
imbi1i |
|
| 33 |
|
impexp |
|
| 34 |
32 33
|
bitri |
|
| 35 |
30 34
|
bitr4di |
|
| 36 |
35
|
ralbidv2 |
|
| 37 |
36
|
rexbidva |
|
| 38 |
37
|
ralbidv |
|
| 39 |
38
|
adantr |
|
| 40 |
1
|
ffvelcdmda |
|
| 41 |
40
|
ralrimiva |
|
| 42 |
41
|
adantr |
|
| 43 |
2
|
adantr |
|
| 44 |
|
simpr |
|
| 45 |
3
|
adantr |
|
| 46 |
42 43 44 45
|
rlim3 |
|
| 47 |
|
elinel1 |
|
| 48 |
47 40
|
sylan2 |
|
| 49 |
48
|
ralrimiva |
|
| 50 |
49
|
adantr |
|
| 51 |
|
inss1 |
|
| 52 |
51 2
|
sstrid |
|
| 53 |
52
|
adantr |
|
| 54 |
50 53 44 45
|
rlim3 |
|
| 55 |
39 46 54
|
3bitr4d |
|
| 56 |
55
|
ex |
|
| 57 |
5 7 56
|
pm5.21ndd |
|
| 58 |
1
|
feqmptd |
|
| 59 |
58
|
breq1d |
|
| 60 |
|
resres |
|
| 61 |
|
ffn |
|
| 62 |
|
fnresdm |
|
| 63 |
1 61 62
|
3syl |
|
| 64 |
63
|
reseq1d |
|
| 65 |
58
|
reseq1d |
|
| 66 |
|
resmpt |
|
| 67 |
51 66
|
ax-mp |
|
| 68 |
65 67
|
eqtrdi |
|
| 69 |
60 64 68
|
3eqtr3a |
|
| 70 |
69
|
breq1d |
|
| 71 |
57 59 70
|
3bitr4d |
|