Metamath Proof Explorer


Theorem rlimresb

Description: The restriction of a function to an unbounded-above interval converges iff the original converges. (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Hypotheses rlimresb.1 φF:A
rlimresb.2 φA
rlimresb.3 φB
Assertion rlimresb φFCFB+∞C

Proof

Step Hyp Ref Expression
1 rlimresb.1 φF:A
2 rlimresb.2 φA
3 rlimresb.3 φB
4 rlimcl xAFxCC
5 4 a1i φxAFxCC
6 rlimcl xAB+∞FxCC
7 6 a1i φxAB+∞FxCC
8 2 adantr φzB+∞xAzxA
9 simprrl φzB+∞xAzxxA
10 8 9 sseldd φzB+∞xAzxx
11 3 adantr φzB+∞xAzxB
12 elicopnf BzB+∞zBz
13 3 12 syl φzB+∞zBz
14 13 biimpa φzB+∞zBz
15 14 adantrr φzB+∞xAzxzBz
16 15 simpld φzB+∞xAzxz
17 15 simprd φzB+∞xAzxBz
18 simprrr φzB+∞xAzxzx
19 11 16 10 17 18 letrd φzB+∞xAzxBx
20 elicopnf BxB+∞xBx
21 11 20 syl φzB+∞xAzxxB+∞xBx
22 10 19 21 mpbir2and φzB+∞xAzxxB+∞
23 22 anassrs φzB+∞xAzxxB+∞
24 23 anassrs φzB+∞xAzxxB+∞
25 biimt xB+∞FxC<yxB+∞FxC<y
26 24 25 syl φzB+∞xAzxFxC<yxB+∞FxC<y
27 26 pm5.74da φzB+∞xAzxFxC<yzxxB+∞FxC<y
28 bi2.04 zxxB+∞FxC<yxB+∞zxFxC<y
29 27 28 bitrdi φzB+∞xAzxFxC<yxB+∞zxFxC<y
30 29 pm5.74da φzB+∞xAzxFxC<yxAxB+∞zxFxC<y
31 elin xAB+∞xAxB+∞
32 31 imbi1i xAB+∞zxFxC<yxAxB+∞zxFxC<y
33 impexp xAxB+∞zxFxC<yxAxB+∞zxFxC<y
34 32 33 bitri xAB+∞zxFxC<yxAxB+∞zxFxC<y
35 30 34 bitr4di φzB+∞xAzxFxC<yxAB+∞zxFxC<y
36 35 ralbidv2 φzB+∞xAzxFxC<yxAB+∞zxFxC<y
37 36 rexbidva φzB+∞xAzxFxC<yzB+∞xAB+∞zxFxC<y
38 37 ralbidv φy+zB+∞xAzxFxC<yy+zB+∞xAB+∞zxFxC<y
39 38 adantr φCy+zB+∞xAzxFxC<yy+zB+∞xAB+∞zxFxC<y
40 1 ffvelcdmda φxAFx
41 40 ralrimiva φxAFx
42 41 adantr φCxAFx
43 2 adantr φCA
44 simpr φCC
45 3 adantr φCB
46 42 43 44 45 rlim3 φCxAFxCy+zB+∞xAzxFxC<y
47 elinel1 xAB+∞xA
48 47 40 sylan2 φxAB+∞Fx
49 48 ralrimiva φxAB+∞Fx
50 49 adantr φCxAB+∞Fx
51 inss1 AB+∞A
52 51 2 sstrid φAB+∞
53 52 adantr φCAB+∞
54 50 53 44 45 rlim3 φCxAB+∞FxCy+zB+∞xAB+∞zxFxC<y
55 39 46 54 3bitr4d φCxAFxCxAB+∞FxC
56 55 ex φCxAFxCxAB+∞FxC
57 5 7 56 pm5.21ndd φxAFxCxAB+∞FxC
58 1 feqmptd φF=xAFx
59 58 breq1d φFCxAFxC
60 resres FAB+∞=FAB+∞
61 ffn F:AFFnA
62 fnresdm FFnAFA=F
63 1 61 62 3syl φFA=F
64 63 reseq1d φFAB+∞=FB+∞
65 58 reseq1d φFAB+∞=xAFxAB+∞
66 resmpt AB+∞AxAFxAB+∞=xAB+∞Fx
67 51 66 ax-mp xAFxAB+∞=xAB+∞Fx
68 65 67 eqtrdi φFAB+∞=xAB+∞Fx
69 60 64 68 3eqtr3a φFB+∞=xAB+∞Fx
70 69 breq1d φFB+∞CxAB+∞FxC
71 57 59 70 3bitr4d φFCFB+∞C