| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimresb.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
| 2 |
|
rlimresb.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 3 |
|
rlimresb.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 4 |
|
rlimcl |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) ) |
| 6 |
|
rlimcl |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 → 𝐶 ∈ ℂ ) ) |
| 8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝐴 ⊆ ℝ ) |
| 9 |
|
simprrl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 10 |
8 9
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
| 11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝐵 ∈ ℝ ) |
| 12 |
|
elicopnf |
⊢ ( 𝐵 ∈ ℝ → ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐵 ≤ 𝑧 ) ) ) |
| 13 |
3 12
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ↔ ( 𝑧 ∈ ℝ ∧ 𝐵 ≤ 𝑧 ) ) ) |
| 14 |
13
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) → ( 𝑧 ∈ ℝ ∧ 𝐵 ≤ 𝑧 ) ) |
| 15 |
14
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → ( 𝑧 ∈ ℝ ∧ 𝐵 ≤ 𝑧 ) ) |
| 16 |
15
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝑧 ∈ ℝ ) |
| 17 |
15
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝐵 ≤ 𝑧 ) |
| 18 |
|
simprrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝑧 ≤ 𝑥 ) |
| 19 |
11 16 10 17 18
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝐵 ≤ 𝑥 ) |
| 20 |
|
elicopnf |
⊢ ( 𝐵 ∈ ℝ → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ) ) ) |
| 21 |
11 20
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝐵 ≤ 𝑥 ) ) ) |
| 22 |
10 19 21
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ( 𝐵 [,) +∞ ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) ) → 𝑥 ∈ ( 𝐵 [,) +∞ ) ) |
| 23 |
22
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑧 ≤ 𝑥 ) ) → 𝑥 ∈ ( 𝐵 [,) +∞ ) ) |
| 24 |
23
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ≤ 𝑥 ) → 𝑥 ∈ ( 𝐵 [,) +∞ ) ) |
| 25 |
|
biimt |
⊢ ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ↔ ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 26 |
24 25
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑧 ≤ 𝑥 ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ↔ ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 27 |
26
|
pm5.74da |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ↔ ( 𝑧 ≤ 𝑥 → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) ) |
| 28 |
|
bi2.04 |
⊢ ( ( 𝑧 ≤ 𝑥 → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 29 |
27 28
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ↔ ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) ) |
| 30 |
29
|
pm5.74da |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) ) ) |
| 31 |
|
elin |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 [,) +∞ ) ) ) |
| 32 |
31
|
imbi1i |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 [,) +∞ ) ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 33 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 [,) +∞ ) ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) ) |
| 34 |
32 33
|
bitri |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ ( 𝐵 [,) +∞ ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) ) |
| 35 |
30 34
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) → ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) ) |
| 36 |
35
|
ralbidv2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐵 [,) +∞ ) ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 37 |
36
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ↔ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 38 |
37
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 40 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 41 |
40
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 43 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐴 ⊆ ℝ ) |
| 44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
| 45 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ ℝ ) |
| 46 |
42 43 44 45
|
rlim3 |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ 𝐴 ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 47 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) → 𝑥 ∈ 𝐴 ) |
| 48 |
47 40
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 49 |
48
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 51 |
|
inss1 |
⊢ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ⊆ 𝐴 |
| 52 |
51 2
|
sstrid |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ⊆ ℝ ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ⊆ ℝ ) |
| 54 |
50 53 44 45
|
rlim3 |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ↔ ∀ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ( 𝐵 [,) +∞ ) ∀ 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ( 𝑧 ≤ 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) − 𝐶 ) ) < 𝑦 ) ) ) |
| 55 |
39 46 54
|
3bitr4d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ) ) |
| 56 |
55
|
ex |
⊢ ( 𝜑 → ( 𝐶 ∈ ℂ → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ) ) ) |
| 57 |
5 7 56
|
pm5.21ndd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ) ) |
| 58 |
1
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 59 |
58
|
breq1d |
⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ) ) |
| 60 |
|
resres |
⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐵 [,) +∞ ) ) = ( 𝐹 ↾ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) |
| 61 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → 𝐹 Fn 𝐴 ) |
| 62 |
|
fnresdm |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 63 |
1 61 62
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐴 ) = 𝐹 ) |
| 64 |
63
|
reseq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐵 [,) +∞ ) ) = ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) ) |
| 65 |
58
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) ) |
| 66 |
|
resmpt |
⊢ ( ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 67 |
51 66
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 68 |
65 67
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 69 |
60 64 68
|
3eqtr3a |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) = ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 70 |
69
|
breq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) ⇝𝑟 𝐶 ↔ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 [,) +∞ ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ⇝𝑟 𝐶 ) ) |
| 71 |
57 59 70
|
3bitr4d |
⊢ ( 𝜑 → ( 𝐹 ⇝𝑟 𝐶 ↔ ( 𝐹 ↾ ( 𝐵 [,) +∞ ) ) ⇝𝑟 𝐶 ) ) |