Step |
Hyp |
Ref |
Expression |
1 |
|
rlim2.1 |
⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐴 𝐵 ∈ ℂ ) |
2 |
|
rlim2.2 |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
3 |
|
rlim2.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
4 |
|
rlim3.4 |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
5 |
1 2 3
|
rlim2 |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝑤 ∈ ℝ ) |
7 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝐷 ∈ ℝ ) |
8 |
6 7
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ℝ ) |
9 |
|
max1 |
⊢ ( ( 𝐷 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → 𝐷 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ) |
10 |
4 9
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → 𝐷 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ) |
11 |
|
elicopnf |
⊢ ( 𝐷 ∈ ℝ → ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ( 𝐷 [,) +∞ ) ↔ ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ℝ ∧ 𝐷 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ) ) ) |
12 |
7 11
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ( 𝐷 [,) +∞ ) ↔ ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ℝ ∧ 𝐷 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ) ) ) |
13 |
8 10 12
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ( 𝐷 [,) +∞ ) ) |
14 |
2 4
|
jca |
⊢ ( 𝜑 → ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ) |
15 |
|
max2 |
⊢ ( ( 𝐷 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → 𝑤 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ) |
16 |
15
|
ad4ant23 |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑤 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ) |
17 |
|
simplr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑤 ∈ ℝ ) |
18 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝐷 ∈ ℝ ) |
19 |
17 18
|
ifcld |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ℝ ) |
20 |
|
simpll |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) → 𝐴 ⊆ ℝ ) |
21 |
20
|
sselda |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ ℝ ) |
22 |
|
letr |
⊢ ( ( 𝑤 ∈ ℝ ∧ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( 𝑤 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∧ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 ) → 𝑤 ≤ 𝑧 ) ) |
23 |
17 19 21 22
|
syl3anc |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑤 ≤ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∧ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 ) → 𝑤 ≤ 𝑧 ) ) |
24 |
16 23
|
mpand |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 → 𝑤 ≤ 𝑧 ) ) |
25 |
24
|
imim1d |
⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
26 |
25
|
ralimdva |
⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ ) ∧ 𝑤 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑧 ∈ 𝐴 ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
27 |
14 26
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑧 ∈ 𝐴 ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
28 |
|
breq1 |
⊢ ( 𝑦 = if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) → ( 𝑦 ≤ 𝑧 ↔ if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 ) ) |
29 |
28
|
rspceaimv |
⊢ ( ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ∈ ( 𝐷 [,) +∞ ) ∧ ∀ 𝑧 ∈ 𝐴 ( if ( 𝐷 ≤ 𝑤 , 𝑤 , 𝐷 ) ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) |
30 |
13 27 29
|
syl6an |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ℝ ) → ( ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
31 |
30
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
32 |
31
|
ralimdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑤 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑤 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
33 |
5 32
|
sylbid |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
34 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
35 |
|
icossre |
⊢ ( ( 𝐷 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝐷 [,) +∞ ) ⊆ ℝ ) |
36 |
4 34 35
|
sylancl |
⊢ ( 𝜑 → ( 𝐷 [,) +∞ ) ⊆ ℝ ) |
37 |
|
ssrexv |
⊢ ( ( 𝐷 [,) +∞ ) ⊆ ℝ → ( ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
38 |
36 37
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
39 |
38
|
ralimdv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
40 |
1 2 3
|
rlim2 |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |
41 |
39 40
|
sylibrd |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) → ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ) ) |
42 |
33 41
|
impbid |
⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐶 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐷 [,) +∞ ) ∀ 𝑧 ∈ 𝐴 ( 𝑦 ≤ 𝑧 → ( abs ‘ ( 𝐵 − 𝐶 ) ) < 𝑥 ) ) ) |