Description: Restrict the range of the domain bound to reals greater than some D e. RR . (Contributed by Mario Carneiro, 16-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rlim2.1 | |
|
rlim2.2 | |
||
rlim2.3 | |
||
rlim3.4 | |
||
Assertion | rlim3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlim2.1 | |
|
2 | rlim2.2 | |
|
3 | rlim2.3 | |
|
4 | rlim3.4 | |
|
5 | 1 2 3 | rlim2 | |
6 | simpr | |
|
7 | 4 | adantr | |
8 | 6 7 | ifcld | |
9 | max1 | |
|
10 | 4 9 | sylan | |
11 | elicopnf | |
|
12 | 7 11 | syl | |
13 | 8 10 12 | mpbir2and | |
14 | 2 4 | jca | |
15 | max2 | |
|
16 | 15 | ad4ant23 | |
17 | simplr | |
|
18 | simpllr | |
|
19 | 17 18 | ifcld | |
20 | simpll | |
|
21 | 20 | sselda | |
22 | letr | |
|
23 | 17 19 21 22 | syl3anc | |
24 | 16 23 | mpand | |
25 | 24 | imim1d | |
26 | 25 | ralimdva | |
27 | 14 26 | sylan | |
28 | breq1 | |
|
29 | 28 | rspceaimv | |
30 | 13 27 29 | syl6an | |
31 | 30 | rexlimdva | |
32 | 31 | ralimdv | |
33 | 5 32 | sylbid | |
34 | pnfxr | |
|
35 | icossre | |
|
36 | 4 34 35 | sylancl | |
37 | ssrexv | |
|
38 | 36 37 | syl | |
39 | 38 | ralimdv | |
40 | 1 2 3 | rlim2 | |
41 | 39 40 | sylibrd | |
42 | 33 41 | impbid | |