Metamath Proof Explorer


Theorem rlim3

Description: Restrict the range of the domain bound to reals greater than some D e. RR . (Contributed by Mario Carneiro, 16-Sep-2014)

Ref Expression
Hypotheses rlim2.1 φzAB
rlim2.2 φA
rlim2.3 φC
rlim3.4 φD
Assertion rlim3 φzABCx+yD+∞zAyzBC<x

Proof

Step Hyp Ref Expression
1 rlim2.1 φzAB
2 rlim2.2 φA
3 rlim2.3 φC
4 rlim3.4 φD
5 1 2 3 rlim2 φzABCx+wzAwzBC<x
6 simpr φww
7 4 adantr φwD
8 6 7 ifcld φwifDwwD
9 max1 DwDifDwwD
10 4 9 sylan φwDifDwwD
11 elicopnf DifDwwDD+∞ifDwwDDifDwwD
12 7 11 syl φwifDwwDD+∞ifDwwDDifDwwD
13 8 10 12 mpbir2and φwifDwwDD+∞
14 2 4 jca φAD
15 max2 DwwifDwwD
16 15 ad4ant23 ADwzAwifDwwD
17 simplr ADwzAw
18 simpllr ADwzAD
19 17 18 ifcld ADwzAifDwwD
20 simpll ADwA
21 20 sselda ADwzAz
22 letr wifDwwDzwifDwwDifDwwDzwz
23 17 19 21 22 syl3anc ADwzAwifDwwDifDwwDzwz
24 16 23 mpand ADwzAifDwwDzwz
25 24 imim1d ADwzAwzBC<xifDwwDzBC<x
26 25 ralimdva ADwzAwzBC<xzAifDwwDzBC<x
27 14 26 sylan φwzAwzBC<xzAifDwwDzBC<x
28 breq1 y=ifDwwDyzifDwwDz
29 28 rspceaimv ifDwwDD+∞zAifDwwDzBC<xyD+∞zAyzBC<x
30 13 27 29 syl6an φwzAwzBC<xyD+∞zAyzBC<x
31 30 rexlimdva φwzAwzBC<xyD+∞zAyzBC<x
32 31 ralimdv φx+wzAwzBC<xx+yD+∞zAyzBC<x
33 5 32 sylbid φzABCx+yD+∞zAyzBC<x
34 pnfxr +∞*
35 icossre D+∞*D+∞
36 4 34 35 sylancl φD+∞
37 ssrexv D+∞yD+∞zAyzBC<xyzAyzBC<x
38 36 37 syl φyD+∞zAyzBC<xyzAyzBC<x
39 38 ralimdv φx+yD+∞zAyzBC<xx+yzAyzBC<x
40 1 2 3 rlim2 φzABCx+yzAyzBC<x
41 39 40 sylibrd φx+yD+∞zAyzBC<xzABC
42 33 41 impbid φzABCx+yD+∞zAyzBC<x