Metamath Proof Explorer


Theorem rlim2

Description: Rewrite rlim for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014) (Revised by Mario Carneiro, 28-Feb-2015)

Ref Expression
Hypotheses rlim2.1 φzAB
rlim2.2 φA
rlim2.3 φC
Assertion rlim2 φzABCx+yzAyzBC<x

Proof

Step Hyp Ref Expression
1 rlim2.1 φzAB
2 rlim2.2 φA
3 rlim2.3 φC
4 eqid zAB=zAB
5 4 fmpt zABzAB:A
6 1 5 sylib φzAB:A
7 eqidd φwAzABw=zABw
8 6 2 7 rlim φzABCCx+ywAywzABwC<x
9 3 biantrurd φx+ywAywzABwC<xCx+ywAywzABwC<x
10 nfv zyw
11 nfcv _zabs
12 nffvmpt1 _zzABw
13 nfcv _z
14 nfcv _zC
15 12 13 14 nfov _zzABwC
16 11 15 nffv _zzABwC
17 nfcv _z<
18 nfcv _zx
19 16 17 18 nfbr zzABwC<x
20 10 19 nfim zywzABwC<x
21 nfv wyzzABzC<x
22 breq2 w=zywyz
23 22 imbrov2fvoveq w=zywzABwC<xyzzABzC<x
24 20 21 23 cbvralw wAywzABwC<xzAyzzABzC<x
25 4 fvmpt2 zABzABz=B
26 25 fvoveq1d zABzABzC=BC
27 26 breq1d zABzABzC<xBC<x
28 27 imbi2d zAByzzABzC<xyzBC<x
29 28 ralimiaa zABzAyzzABzC<xyzBC<x
30 ralbi zAyzzABzC<xyzBC<xzAyzzABzC<xzAyzBC<x
31 1 29 30 3syl φzAyzzABzC<xzAyzBC<x
32 24 31 bitrid φwAywzABwC<xzAyzBC<x
33 32 rexbidv φywAywzABwC<xyzAyzBC<x
34 33 ralbidv φx+ywAywzABwC<xx+yzAyzBC<x
35 8 9 34 3bitr2d φzABCx+yzAyzBC<x