| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 2 |  | elicopnf | ⊢ ( 2  ∈  ℝ  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  2  ≤  𝑥 ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  2  ≤  𝑥 ) ) | 
						
							| 4 |  | chprpcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  2  ≤  𝑥 )  →  ( ψ ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 5 | 3 4 | sylbi | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ψ ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 6 | 3 | simplbi | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 7 |  | 0red | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  0  ∈  ℝ ) | 
						
							| 8 | 1 | a1i | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  2  ∈  ℝ ) | 
						
							| 9 |  | 2pos | ⊢ 0  <  2 | 
						
							| 10 | 9 | a1i | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  0  <  2 ) | 
						
							| 11 | 3 | simprbi | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  2  ≤  𝑥 ) | 
						
							| 12 | 7 8 6 10 11 | ltletrd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  0  <  𝑥 ) | 
						
							| 13 | 6 12 | elrpd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 14 | 5 13 | rpdivcld | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ+ ) | 
						
							| 16 |  | chtrpcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  2  ≤  𝑥 )  →  ( θ ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 17 | 3 16 | sylbi | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( θ ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 18 | 5 17 | rpdivcld | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) )  ∈  ℝ+ ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) )  ∈  ℝ+ ) | 
						
							| 20 | 13 | ssriv | ⊢ ( 2 [,) +∞ )  ⊆  ℝ+ | 
						
							| 21 | 20 | a1i | ⊢ ( ⊤  →  ( 2 [,) +∞ )  ⊆  ℝ+ ) | 
						
							| 22 |  | pnt3 | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  ⇝𝑟  1 | 
						
							| 23 | 22 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  ⇝𝑟  1 ) | 
						
							| 24 | 21 23 | rlimres2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  ⇝𝑟  1 ) | 
						
							| 25 |  | chpchtlim | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) ) )  ⇝𝑟  1 | 
						
							| 26 | 25 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) ) )  ⇝𝑟  1 ) | 
						
							| 27 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 28 | 27 | a1i | ⊢ ( ⊤  →  1  ≠  0 ) | 
						
							| 29 | 19 | rpne0d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) )  ≠  0 ) | 
						
							| 30 | 15 19 24 26 28 29 | rlimdiv | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  /  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) ) ) )  ⇝𝑟  ( 1  /  1 ) ) | 
						
							| 31 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 32 |  | chpcl | ⊢ ( 𝑥  ∈  ℝ  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 33 | 31 32 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 34 | 33 | recnd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ψ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 35 | 13 34 | syl | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ψ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 36 | 13 | rpcnne0d | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) ) | 
						
							| 37 | 5 | rpcnne0d | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( ψ ‘ 𝑥 )  ∈  ℂ  ∧  ( ψ ‘ 𝑥 )  ≠  0 ) ) | 
						
							| 38 | 17 | rpcnne0d | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( θ ‘ 𝑥 )  ∈  ℂ  ∧  ( θ ‘ 𝑥 )  ≠  0 ) ) | 
						
							| 39 |  | divdivdiv | ⊢ ( ( ( ( ψ ‘ 𝑥 )  ∈  ℂ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) )  ∧  ( ( ( ψ ‘ 𝑥 )  ∈  ℂ  ∧  ( ψ ‘ 𝑥 )  ≠  0 )  ∧  ( ( θ ‘ 𝑥 )  ∈  ℂ  ∧  ( θ ‘ 𝑥 )  ≠  0 ) ) )  →  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  /  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) ) )  =  ( ( ( ψ ‘ 𝑥 )  ·  ( θ ‘ 𝑥 ) )  /  ( 𝑥  ·  ( ψ ‘ 𝑥 ) ) ) ) | 
						
							| 40 | 35 36 37 38 39 | syl22anc | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  /  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) ) )  =  ( ( ( ψ ‘ 𝑥 )  ·  ( θ ‘ 𝑥 ) )  /  ( 𝑥  ·  ( ψ ‘ 𝑥 ) ) ) ) | 
						
							| 41 | 6 | recnd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  𝑥  ∈  ℂ ) | 
						
							| 42 | 41 35 | mulcomd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( 𝑥  ·  ( ψ ‘ 𝑥 ) )  =  ( ( ψ ‘ 𝑥 )  ·  𝑥 ) ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( ( ψ ‘ 𝑥 )  ·  ( θ ‘ 𝑥 ) )  /  ( 𝑥  ·  ( ψ ‘ 𝑥 ) ) )  =  ( ( ( ψ ‘ 𝑥 )  ·  ( θ ‘ 𝑥 ) )  /  ( ( ψ ‘ 𝑥 )  ·  𝑥 ) ) ) | 
						
							| 44 |  | chtcl | ⊢ ( 𝑥  ∈  ℝ  →  ( θ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 45 | 31 44 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( θ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 46 | 45 | recnd | ⊢ ( 𝑥  ∈  ℝ+  →  ( θ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 47 | 13 46 | syl | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( θ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 48 |  | divcan5 | ⊢ ( ( ( θ ‘ 𝑥 )  ∈  ℂ  ∧  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  ∧  ( ( ψ ‘ 𝑥 )  ∈  ℂ  ∧  ( ψ ‘ 𝑥 )  ≠  0 ) )  →  ( ( ( ψ ‘ 𝑥 )  ·  ( θ ‘ 𝑥 ) )  /  ( ( ψ ‘ 𝑥 )  ·  𝑥 ) )  =  ( ( θ ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 49 | 47 36 37 48 | syl3anc | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( ( ψ ‘ 𝑥 )  ·  ( θ ‘ 𝑥 ) )  /  ( ( ψ ‘ 𝑥 )  ·  𝑥 ) )  =  ( ( θ ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 50 | 40 43 49 | 3eqtrd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  /  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) ) )  =  ( ( θ ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 51 | 50 | mpteq2ia | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  /  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 52 |  | resmpt | ⊢ ( ( 2 [,) +∞ )  ⊆  ℝ+  →  ( ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ↾  ( 2 [,) +∞ ) )  =  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) ) ) | 
						
							| 53 | 20 52 | ax-mp | ⊢ ( ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ↾  ( 2 [,) +∞ ) )  =  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 54 | 51 53 | eqtr4i | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  /  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) ) ) )  =  ( ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ↾  ( 2 [,) +∞ ) ) | 
						
							| 55 |  | 1div1e1 | ⊢ ( 1  /  1 )  =  1 | 
						
							| 56 | 30 54 55 | 3brtr3g | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ↾  ( 2 [,) +∞ ) )  ⇝𝑟  1 ) | 
						
							| 57 |  | rerpdivcl | ⊢ ( ( ( θ ‘ 𝑥 )  ∈  ℝ  ∧  𝑥  ∈  ℝ+ )  →  ( ( θ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 58 | 45 57 | mpancom | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( θ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( ( θ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 60 | 59 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( ( θ ‘ 𝑥 )  /  𝑥 )  ∈  ℂ ) | 
						
							| 61 | 60 | fmpttd | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) ) : ℝ+ ⟶ ℂ ) | 
						
							| 62 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 63 | 62 | a1i | ⊢ ( ⊤  →  ℝ+  ⊆  ℝ ) | 
						
							| 64 | 1 | a1i | ⊢ ( ⊤  →  2  ∈  ℝ ) | 
						
							| 65 | 61 63 64 | rlimresb | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ⇝𝑟  1  ↔  ( ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ↾  ( 2 [,) +∞ ) )  ⇝𝑟  1 ) ) | 
						
							| 66 | 56 65 | mpbird | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ⇝𝑟  1 ) | 
						
							| 67 | 66 | mptru | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( θ ‘ 𝑥 )  /  𝑥 ) )  ⇝𝑟  1 |