| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1red | ⊢ ( ⊤  →  1  ∈  ℝ ) | 
						
							| 2 |  | 1red | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  1  ∈  ℝ ) | 
						
							| 3 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 4 |  | elicopnf | ⊢ ( 2  ∈  ℝ  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  2  ≤  𝑥 ) ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  ↔  ( 𝑥  ∈  ℝ  ∧  2  ≤  𝑥 ) ) | 
						
							| 6 | 5 | simplbi | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  𝑥  ∈  ℝ ) | 
						
							| 8 |  | 0red | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  0  ∈  ℝ ) | 
						
							| 9 | 3 | a1i | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  2  ∈  ℝ ) | 
						
							| 10 |  | 2pos | ⊢ 0  <  2 | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  0  <  2 ) | 
						
							| 12 | 5 | simprbi | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  2  ≤  𝑥 ) | 
						
							| 13 | 8 9 6 11 12 | ltletrd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  0  <  𝑥 ) | 
						
							| 14 | 6 13 | elrpd | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 16 | 15 | rpge0d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  0  ≤  𝑥 ) | 
						
							| 17 | 7 16 | resqrtcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( √ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 18 | 15 | relogcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 19 | 17 18 | remulcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 20 | 12 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  2  ≤  𝑥 ) | 
						
							| 21 |  | chtrpcl | ⊢ ( ( 𝑥  ∈  ℝ  ∧  2  ≤  𝑥 )  →  ( θ ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 22 | 7 20 21 | syl2anc | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( θ ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 23 | 19 22 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 24 | 6 | ssriv | ⊢ ( 2 [,) +∞ )  ⊆  ℝ | 
						
							| 25 | 1 | recnd | ⊢ ( ⊤  →  1  ∈  ℂ ) | 
						
							| 26 |  | rlimconst | ⊢ ( ( ( 2 [,) +∞ )  ⊆  ℝ  ∧  1  ∈  ℂ )  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  1 )  ⇝𝑟  1 ) | 
						
							| 27 | 24 25 26 | sylancr | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  1 )  ⇝𝑟  1 ) | 
						
							| 28 |  | ovexd | ⊢ ( ⊤  →  ( 2 [,) +∞ )  ∈  V ) | 
						
							| 29 | 7 22 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( 𝑥  /  ( θ ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 30 |  | ovexd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  𝑥 )  ∈  V ) | 
						
							| 31 |  | eqidd | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( 𝑥  /  ( θ ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( 𝑥  /  ( θ ‘ 𝑥 ) ) ) ) | 
						
							| 32 | 7 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  𝑥  ∈  ℂ ) | 
						
							| 33 |  | cxpsqrt | ⊢ ( 𝑥  ∈  ℂ  →  ( 𝑥 ↑𝑐 ( 1  /  2 ) )  =  ( √ ‘ 𝑥 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( 𝑥 ↑𝑐 ( 1  /  2 ) )  =  ( √ ‘ 𝑥 ) ) | 
						
							| 35 | 34 | oveq2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( log ‘ 𝑥 )  /  ( 𝑥 ↑𝑐 ( 1  /  2 ) ) )  =  ( ( log ‘ 𝑥 )  /  ( √ ‘ 𝑥 ) ) ) | 
						
							| 36 | 18 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 37 | 15 | rpsqrtcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( √ ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 38 | 37 | rpcnne0d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( √ ‘ 𝑥 )  ∈  ℂ  ∧  ( √ ‘ 𝑥 )  ≠  0 ) ) | 
						
							| 39 |  | divcan5 | ⊢ ( ( ( log ‘ 𝑥 )  ∈  ℂ  ∧  ( ( √ ‘ 𝑥 )  ∈  ℂ  ∧  ( √ ‘ 𝑥 )  ≠  0 )  ∧  ( ( √ ‘ 𝑥 )  ∈  ℂ  ∧  ( √ ‘ 𝑥 )  ≠  0 ) )  →  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( ( √ ‘ 𝑥 )  ·  ( √ ‘ 𝑥 ) ) )  =  ( ( log ‘ 𝑥 )  /  ( √ ‘ 𝑥 ) ) ) | 
						
							| 40 | 36 38 38 39 | syl3anc | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( ( √ ‘ 𝑥 )  ·  ( √ ‘ 𝑥 ) ) )  =  ( ( log ‘ 𝑥 )  /  ( √ ‘ 𝑥 ) ) ) | 
						
							| 41 |  | remsqsqrt | ⊢ ( ( 𝑥  ∈  ℝ  ∧  0  ≤  𝑥 )  →  ( ( √ ‘ 𝑥 )  ·  ( √ ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 42 | 7 16 41 | syl2anc | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( √ ‘ 𝑥 )  ·  ( √ ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( ( √ ‘ 𝑥 )  ·  ( √ ‘ 𝑥 ) ) )  =  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  𝑥 ) ) | 
						
							| 44 | 35 40 43 | 3eqtr2d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( log ‘ 𝑥 )  /  ( 𝑥 ↑𝑐 ( 1  /  2 ) ) )  =  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  𝑥 ) ) | 
						
							| 45 | 44 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( log ‘ 𝑥 )  /  ( 𝑥 ↑𝑐 ( 1  /  2 ) ) ) )  =  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  𝑥 ) ) ) | 
						
							| 46 | 28 29 30 31 45 | offval2 | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( 𝑥  /  ( θ ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( log ‘ 𝑥 )  /  ( 𝑥 ↑𝑐 ( 1  /  2 ) ) ) ) )  =  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( 𝑥  /  ( θ ‘ 𝑥 ) )  ·  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  𝑥 ) ) ) ) | 
						
							| 47 | 15 | rpne0d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  𝑥  ≠  0 ) | 
						
							| 48 | 22 | rpcnne0d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( θ ‘ 𝑥 )  ∈  ℂ  ∧  ( θ ‘ 𝑥 )  ≠  0 ) ) | 
						
							| 49 | 19 | recnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 50 |  | dmdcan | ⊢ ( ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  ∧  ( ( θ ‘ 𝑥 )  ∈  ℂ  ∧  ( θ ‘ 𝑥 )  ≠  0 )  ∧  ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  ∈  ℂ )  →  ( ( 𝑥  /  ( θ ‘ 𝑥 ) )  ·  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  𝑥 ) )  =  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) ) | 
						
							| 51 | 32 47 48 49 50 | syl211anc | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( 𝑥  /  ( θ ‘ 𝑥 ) )  ·  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  𝑥 ) )  =  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) ) | 
						
							| 52 | 51 | mpteq2dva | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( 𝑥  /  ( θ ‘ 𝑥 ) )  ·  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  𝑥 ) ) )  =  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) ) ) | 
						
							| 53 | 46 52 | eqtrd | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( 𝑥  /  ( θ ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( log ‘ 𝑥 )  /  ( 𝑥 ↑𝑐 ( 1  /  2 ) ) ) ) )  =  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) ) ) | 
						
							| 54 |  | chto1lb | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( 𝑥  /  ( θ ‘ 𝑥 ) ) )  ∈  𝑂(1) | 
						
							| 55 | 14 | ssriv | ⊢ ( 2 [,) +∞ )  ⊆  ℝ+ | 
						
							| 56 | 55 | a1i | ⊢ ( ⊤  →  ( 2 [,) +∞ )  ⊆  ℝ+ ) | 
						
							| 57 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 58 |  | rphalfcl | ⊢ ( 1  ∈  ℝ+  →  ( 1  /  2 )  ∈  ℝ+ ) | 
						
							| 59 | 57 58 | ax-mp | ⊢ ( 1  /  2 )  ∈  ℝ+ | 
						
							| 60 |  | cxploglim | ⊢ ( ( 1  /  2 )  ∈  ℝ+  →  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ 𝑥 )  /  ( 𝑥 ↑𝑐 ( 1  /  2 ) ) ) )  ⇝𝑟  0 ) | 
						
							| 61 | 59 60 | ax-mp | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ 𝑥 )  /  ( 𝑥 ↑𝑐 ( 1  /  2 ) ) ) )  ⇝𝑟  0 | 
						
							| 62 | 61 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( log ‘ 𝑥 )  /  ( 𝑥 ↑𝑐 ( 1  /  2 ) ) ) )  ⇝𝑟  0 ) | 
						
							| 63 | 56 62 | rlimres2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( log ‘ 𝑥 )  /  ( 𝑥 ↑𝑐 ( 1  /  2 ) ) ) )  ⇝𝑟  0 ) | 
						
							| 64 |  | o1rlimmul | ⊢ ( ( ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( 𝑥  /  ( θ ‘ 𝑥 ) ) )  ∈  𝑂(1)  ∧  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( log ‘ 𝑥 )  /  ( 𝑥 ↑𝑐 ( 1  /  2 ) ) ) )  ⇝𝑟  0 )  →  ( ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( 𝑥  /  ( θ ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( log ‘ 𝑥 )  /  ( 𝑥 ↑𝑐 ( 1  /  2 ) ) ) ) )  ⇝𝑟  0 ) | 
						
							| 65 | 54 63 64 | sylancr | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( 𝑥  /  ( θ ‘ 𝑥 ) ) )  ∘f   ·  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( log ‘ 𝑥 )  /  ( 𝑥 ↑𝑐 ( 1  /  2 ) ) ) ) )  ⇝𝑟  0 ) | 
						
							| 66 | 53 65 | eqbrtrrd | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) )  ⇝𝑟  0 ) | 
						
							| 67 | 2 23 27 66 | rlimadd | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( 1  +  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) ) )  ⇝𝑟  ( 1  +  0 ) ) | 
						
							| 68 |  | 1p0e1 | ⊢ ( 1  +  0 )  =  1 | 
						
							| 69 | 67 68 | breqtrdi | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( 1  +  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) ) )  ⇝𝑟  1 ) | 
						
							| 70 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 71 |  | readdcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) )  ∈  ℝ )  →  ( 1  +  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 72 | 70 23 71 | sylancr | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( 1  +  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 73 |  | chpcl | ⊢ ( 𝑥  ∈  ℝ  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 74 | 7 73 | syl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 75 | 74 22 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 76 |  | chtcl | ⊢ ( 𝑥  ∈  ℝ  →  ( θ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 77 | 7 76 | syl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( θ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 78 | 77 19 | readdcld | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( θ ‘ 𝑥 )  +  ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 79 | 3 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  2  ∈  ℝ ) | 
						
							| 80 |  | 1le2 | ⊢ 1  ≤  2 | 
						
							| 81 | 80 | a1i | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  1  ≤  2 ) | 
						
							| 82 | 2 79 7 81 20 | letrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  1  ≤  𝑥 ) | 
						
							| 83 |  | chpub | ⊢ ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  →  ( ψ ‘ 𝑥 )  ≤  ( ( θ ‘ 𝑥 )  +  ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 84 | 7 82 83 | syl2anc | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ψ ‘ 𝑥 )  ≤  ( ( θ ‘ 𝑥 )  +  ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 85 | 74 78 22 84 | lediv1dd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) )  ≤  ( ( ( θ ‘ 𝑥 )  +  ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  ( θ ‘ 𝑥 ) ) ) | 
						
							| 86 | 22 | rpcnd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( θ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 87 |  | divdir | ⊢ ( ( ( θ ‘ 𝑥 )  ∈  ℂ  ∧  ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  ∈  ℂ  ∧  ( ( θ ‘ 𝑥 )  ∈  ℂ  ∧  ( θ ‘ 𝑥 )  ≠  0 ) )  →  ( ( ( θ ‘ 𝑥 )  +  ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  ( θ ‘ 𝑥 ) )  =  ( ( ( θ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) )  +  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) ) ) | 
						
							| 88 | 86 49 48 87 | syl3anc | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( ( θ ‘ 𝑥 )  +  ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  ( θ ‘ 𝑥 ) )  =  ( ( ( θ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) )  +  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) ) ) | 
						
							| 89 |  | divid | ⊢ ( ( ( θ ‘ 𝑥 )  ∈  ℂ  ∧  ( θ ‘ 𝑥 )  ≠  0 )  →  ( ( θ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) )  =  1 ) | 
						
							| 90 | 48 89 | syl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( θ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) )  =  1 ) | 
						
							| 91 | 90 | oveq1d | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( ( θ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) )  +  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) )  =  ( 1  +  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) ) ) | 
						
							| 92 | 88 91 | eqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( ( θ ‘ 𝑥 )  +  ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  /  ( θ ‘ 𝑥 ) )  =  ( 1  +  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) ) ) | 
						
							| 93 | 85 92 | breqtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) )  ≤  ( 1  +  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) ) ) | 
						
							| 94 | 93 | adantrr | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( 2 [,) +∞ )  ∧  1  ≤  𝑥 ) )  →  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) )  ≤  ( 1  +  ( ( ( √ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  /  ( θ ‘ 𝑥 ) ) ) ) | 
						
							| 95 | 86 | mullidd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( 1  ·  ( θ ‘ 𝑥 ) )  =  ( θ ‘ 𝑥 ) ) | 
						
							| 96 |  | chtlepsi | ⊢ ( 𝑥  ∈  ℝ  →  ( θ ‘ 𝑥 )  ≤  ( ψ ‘ 𝑥 ) ) | 
						
							| 97 | 7 96 | syl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( θ ‘ 𝑥 )  ≤  ( ψ ‘ 𝑥 ) ) | 
						
							| 98 | 95 97 | eqbrtrd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( 1  ·  ( θ ‘ 𝑥 ) )  ≤  ( ψ ‘ 𝑥 ) ) | 
						
							| 99 | 2 74 22 | lemuldivd | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  ( ( 1  ·  ( θ ‘ 𝑥 ) )  ≤  ( ψ ‘ 𝑥 )  ↔  1  ≤  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) ) ) ) | 
						
							| 100 | 98 99 | mpbid | ⊢ ( ( ⊤  ∧  𝑥  ∈  ( 2 [,) +∞ ) )  →  1  ≤  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) ) ) | 
						
							| 101 | 100 | adantrr | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ( 2 [,) +∞ )  ∧  1  ≤  𝑥 ) )  →  1  ≤  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) ) ) | 
						
							| 102 | 1 1 69 72 75 94 101 | rlimsqz2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) ) )  ⇝𝑟  1 ) | 
						
							| 103 | 102 | mptru | ⊢ ( 𝑥  ∈  ( 2 [,) +∞ )  ↦  ( ( ψ ‘ 𝑥 )  /  ( θ ‘ 𝑥 ) ) )  ⇝𝑟  1 |