| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1red |
|- ( T. -> 1 e. RR ) |
| 2 |
|
1red |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 1 e. RR ) |
| 3 |
|
2re |
|- 2 e. RR |
| 4 |
|
elicopnf |
|- ( 2 e. RR -> ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) ) |
| 5 |
3 4
|
ax-mp |
|- ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) |
| 6 |
5
|
simplbi |
|- ( x e. ( 2 [,) +oo ) -> x e. RR ) |
| 7 |
6
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> x e. RR ) |
| 8 |
|
0red |
|- ( x e. ( 2 [,) +oo ) -> 0 e. RR ) |
| 9 |
3
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 2 e. RR ) |
| 10 |
|
2pos |
|- 0 < 2 |
| 11 |
10
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 0 < 2 ) |
| 12 |
5
|
simprbi |
|- ( x e. ( 2 [,) +oo ) -> 2 <_ x ) |
| 13 |
8 9 6 11 12
|
ltletrd |
|- ( x e. ( 2 [,) +oo ) -> 0 < x ) |
| 14 |
6 13
|
elrpd |
|- ( x e. ( 2 [,) +oo ) -> x e. RR+ ) |
| 15 |
14
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> x e. RR+ ) |
| 16 |
15
|
rpge0d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 0 <_ x ) |
| 17 |
7 16
|
resqrtcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( sqrt ` x ) e. RR ) |
| 18 |
15
|
relogcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( log ` x ) e. RR ) |
| 19 |
17 18
|
remulcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( sqrt ` x ) x. ( log ` x ) ) e. RR ) |
| 20 |
12
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 2 <_ x ) |
| 21 |
|
chtrpcl |
|- ( ( x e. RR /\ 2 <_ x ) -> ( theta ` x ) e. RR+ ) |
| 22 |
7 20 21
|
syl2anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( theta ` x ) e. RR+ ) |
| 23 |
19 22
|
rerpdivcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) e. RR ) |
| 24 |
6
|
ssriv |
|- ( 2 [,) +oo ) C_ RR |
| 25 |
1
|
recnd |
|- ( T. -> 1 e. CC ) |
| 26 |
|
rlimconst |
|- ( ( ( 2 [,) +oo ) C_ RR /\ 1 e. CC ) -> ( x e. ( 2 [,) +oo ) |-> 1 ) ~~>r 1 ) |
| 27 |
24 25 26
|
sylancr |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> 1 ) ~~>r 1 ) |
| 28 |
|
ovexd |
|- ( T. -> ( 2 [,) +oo ) e. _V ) |
| 29 |
7 22
|
rerpdivcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( x / ( theta ` x ) ) e. RR ) |
| 30 |
|
ovexd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) e. _V ) |
| 31 |
|
eqidd |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) ) |
| 32 |
7
|
recnd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> x e. CC ) |
| 33 |
|
cxpsqrt |
|- ( x e. CC -> ( x ^c ( 1 / 2 ) ) = ( sqrt ` x ) ) |
| 34 |
32 33
|
syl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( x ^c ( 1 / 2 ) ) = ( sqrt ` x ) ) |
| 35 |
34
|
oveq2d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) = ( ( log ` x ) / ( sqrt ` x ) ) ) |
| 36 |
18
|
recnd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( log ` x ) e. CC ) |
| 37 |
15
|
rpsqrtcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( sqrt ` x ) e. RR+ ) |
| 38 |
37
|
rpcnne0d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( sqrt ` x ) e. CC /\ ( sqrt ` x ) =/= 0 ) ) |
| 39 |
|
divcan5 |
|- ( ( ( log ` x ) e. CC /\ ( ( sqrt ` x ) e. CC /\ ( sqrt ` x ) =/= 0 ) /\ ( ( sqrt ` x ) e. CC /\ ( sqrt ` x ) =/= 0 ) ) -> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( ( sqrt ` x ) x. ( sqrt ` x ) ) ) = ( ( log ` x ) / ( sqrt ` x ) ) ) |
| 40 |
36 38 38 39
|
syl3anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( ( sqrt ` x ) x. ( sqrt ` x ) ) ) = ( ( log ` x ) / ( sqrt ` x ) ) ) |
| 41 |
|
remsqsqrt |
|- ( ( x e. RR /\ 0 <_ x ) -> ( ( sqrt ` x ) x. ( sqrt ` x ) ) = x ) |
| 42 |
7 16 41
|
syl2anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( sqrt ` x ) x. ( sqrt ` x ) ) = x ) |
| 43 |
42
|
oveq2d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( ( sqrt ` x ) x. ( sqrt ` x ) ) ) = ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) |
| 44 |
35 40 43
|
3eqtr2d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) = ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) |
| 45 |
44
|
mpteq2dva |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) ) |
| 46 |
28 29 30 31 45
|
offval2 |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( x / ( theta ` x ) ) x. ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) ) ) |
| 47 |
15
|
rpne0d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> x =/= 0 ) |
| 48 |
22
|
rpcnne0d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) ) |
| 49 |
19
|
recnd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( sqrt ` x ) x. ( log ` x ) ) e. CC ) |
| 50 |
|
dmdcan |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) /\ ( ( sqrt ` x ) x. ( log ` x ) ) e. CC ) -> ( ( x / ( theta ` x ) ) x. ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) = ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) |
| 51 |
32 47 48 49 50
|
syl211anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( x / ( theta ` x ) ) x. ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) = ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) |
| 52 |
51
|
mpteq2dva |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( x / ( theta ` x ) ) x. ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
| 53 |
46 52
|
eqtrd |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
| 54 |
|
chto1lb |
|- ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) e. O(1) |
| 55 |
14
|
ssriv |
|- ( 2 [,) +oo ) C_ RR+ |
| 56 |
55
|
a1i |
|- ( T. -> ( 2 [,) +oo ) C_ RR+ ) |
| 57 |
|
1rp |
|- 1 e. RR+ |
| 58 |
|
rphalfcl |
|- ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) |
| 59 |
57 58
|
ax-mp |
|- ( 1 / 2 ) e. RR+ |
| 60 |
|
cxploglim |
|- ( ( 1 / 2 ) e. RR+ -> ( x e. RR+ |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ~~>r 0 ) |
| 61 |
59 60
|
ax-mp |
|- ( x e. RR+ |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ~~>r 0 |
| 62 |
61
|
a1i |
|- ( T. -> ( x e. RR+ |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ~~>r 0 ) |
| 63 |
56 62
|
rlimres2 |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ~~>r 0 ) |
| 64 |
|
o1rlimmul |
|- ( ( ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) e. O(1) /\ ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ~~>r 0 ) -> ( ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ) ~~>r 0 ) |
| 65 |
54 63 64
|
sylancr |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ) ~~>r 0 ) |
| 66 |
53 65
|
eqbrtrrd |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ~~>r 0 ) |
| 67 |
2 23 27 66
|
rlimadd |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) ~~>r ( 1 + 0 ) ) |
| 68 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
| 69 |
67 68
|
breqtrdi |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) ~~>r 1 ) |
| 70 |
|
1re |
|- 1 e. RR |
| 71 |
|
readdcl |
|- ( ( 1 e. RR /\ ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) e. RR ) -> ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) e. RR ) |
| 72 |
70 23 71
|
sylancr |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) e. RR ) |
| 73 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
| 74 |
7 73
|
syl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( psi ` x ) e. RR ) |
| 75 |
74 22
|
rerpdivcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( psi ` x ) / ( theta ` x ) ) e. RR ) |
| 76 |
|
chtcl |
|- ( x e. RR -> ( theta ` x ) e. RR ) |
| 77 |
7 76
|
syl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( theta ` x ) e. RR ) |
| 78 |
77 19
|
readdcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) e. RR ) |
| 79 |
3
|
a1i |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 2 e. RR ) |
| 80 |
|
1le2 |
|- 1 <_ 2 |
| 81 |
80
|
a1i |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 1 <_ 2 ) |
| 82 |
2 79 7 81 20
|
letrd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 1 <_ x ) |
| 83 |
|
chpub |
|- ( ( x e. RR /\ 1 <_ x ) -> ( psi ` x ) <_ ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) ) |
| 84 |
7 82 83
|
syl2anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( psi ` x ) <_ ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) ) |
| 85 |
74 78 22 84
|
lediv1dd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( psi ` x ) / ( theta ` x ) ) <_ ( ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) / ( theta ` x ) ) ) |
| 86 |
22
|
rpcnd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( theta ` x ) e. CC ) |
| 87 |
|
divdir |
|- ( ( ( theta ` x ) e. CC /\ ( ( sqrt ` x ) x. ( log ` x ) ) e. CC /\ ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) ) -> ( ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) / ( theta ` x ) ) = ( ( ( theta ` x ) / ( theta ` x ) ) + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
| 88 |
86 49 48 87
|
syl3anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) / ( theta ` x ) ) = ( ( ( theta ` x ) / ( theta ` x ) ) + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
| 89 |
|
divid |
|- ( ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) -> ( ( theta ` x ) / ( theta ` x ) ) = 1 ) |
| 90 |
48 89
|
syl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / ( theta ` x ) ) = 1 ) |
| 91 |
90
|
oveq1d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( theta ` x ) / ( theta ` x ) ) + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) = ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
| 92 |
88 91
|
eqtrd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) / ( theta ` x ) ) = ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
| 93 |
85 92
|
breqtrd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( psi ` x ) / ( theta ` x ) ) <_ ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
| 94 |
93
|
adantrr |
|- ( ( T. /\ ( x e. ( 2 [,) +oo ) /\ 1 <_ x ) ) -> ( ( psi ` x ) / ( theta ` x ) ) <_ ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
| 95 |
86
|
mullidd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( 1 x. ( theta ` x ) ) = ( theta ` x ) ) |
| 96 |
|
chtlepsi |
|- ( x e. RR -> ( theta ` x ) <_ ( psi ` x ) ) |
| 97 |
7 96
|
syl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( theta ` x ) <_ ( psi ` x ) ) |
| 98 |
95 97
|
eqbrtrd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( 1 x. ( theta ` x ) ) <_ ( psi ` x ) ) |
| 99 |
2 74 22
|
lemuldivd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( 1 x. ( theta ` x ) ) <_ ( psi ` x ) <-> 1 <_ ( ( psi ` x ) / ( theta ` x ) ) ) ) |
| 100 |
98 99
|
mpbid |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 1 <_ ( ( psi ` x ) / ( theta ` x ) ) ) |
| 101 |
100
|
adantrr |
|- ( ( T. /\ ( x e. ( 2 [,) +oo ) /\ 1 <_ x ) ) -> 1 <_ ( ( psi ` x ) / ( theta ` x ) ) ) |
| 102 |
1 1 69 72 75 94 101
|
rlimsqz2 |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ~~>r 1 ) |
| 103 |
102
|
mptru |
|- ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ~~>r 1 |