| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
|- 2 e. RR |
| 2 |
|
elicopnf |
|- ( 2 e. RR -> ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) |
| 4 |
|
chtrpcl |
|- ( ( x e. RR /\ 2 <_ x ) -> ( theta ` x ) e. RR+ ) |
| 5 |
3 4
|
sylbi |
|- ( x e. ( 2 [,) +oo ) -> ( theta ` x ) e. RR+ ) |
| 6 |
5
|
rpcnne0d |
|- ( x e. ( 2 [,) +oo ) -> ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) ) |
| 7 |
3
|
simplbi |
|- ( x e. ( 2 [,) +oo ) -> x e. RR ) |
| 8 |
|
0red |
|- ( x e. ( 2 [,) +oo ) -> 0 e. RR ) |
| 9 |
1
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 2 e. RR ) |
| 10 |
|
2pos |
|- 0 < 2 |
| 11 |
10
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 0 < 2 ) |
| 12 |
3
|
simprbi |
|- ( x e. ( 2 [,) +oo ) -> 2 <_ x ) |
| 13 |
8 9 7 11 12
|
ltletrd |
|- ( x e. ( 2 [,) +oo ) -> 0 < x ) |
| 14 |
7 13
|
elrpd |
|- ( x e. ( 2 [,) +oo ) -> x e. RR+ ) |
| 15 |
14
|
rpcnne0d |
|- ( x e. ( 2 [,) +oo ) -> ( x e. CC /\ x =/= 0 ) ) |
| 16 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 17 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
| 18 |
16 17
|
syl |
|- ( x e. RR+ -> ( psi ` x ) e. RR ) |
| 19 |
18
|
recnd |
|- ( x e. RR+ -> ( psi ` x ) e. CC ) |
| 20 |
14 19
|
syl |
|- ( x e. ( 2 [,) +oo ) -> ( psi ` x ) e. CC ) |
| 21 |
|
dmdcan |
|- ( ( ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) /\ ( x e. CC /\ x =/= 0 ) /\ ( psi ` x ) e. CC ) -> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) = ( ( psi ` x ) / x ) ) |
| 22 |
6 15 20 21
|
syl3anc |
|- ( x e. ( 2 [,) +oo ) -> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) = ( ( psi ` x ) / x ) ) |
| 23 |
22
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) = ( ( psi ` x ) / x ) ) |
| 24 |
23
|
mpteq2dva |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / x ) ) ) |
| 25 |
|
ovexd |
|- ( T. -> ( 2 [,) +oo ) e. _V ) |
| 26 |
|
ovexd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / x ) e. _V ) |
| 27 |
|
ovexd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( psi ` x ) / ( theta ` x ) ) e. _V ) |
| 28 |
|
eqidd |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) ) |
| 29 |
|
eqidd |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) |
| 30 |
25 26 27 28 29
|
offval2 |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) ) ) |
| 31 |
14
|
ssriv |
|- ( 2 [,) +oo ) C_ RR+ |
| 32 |
|
resmpt |
|- ( ( 2 [,) +oo ) C_ RR+ -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / x ) ) ) |
| 33 |
31 32
|
mp1i |
|- ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / x ) ) ) |
| 34 |
24 30 33
|
3eqtr4rd |
|- ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) ) |
| 35 |
31
|
a1i |
|- ( T. -> ( 2 [,) +oo ) C_ RR+ ) |
| 36 |
|
chto1ub |
|- ( x e. RR+ |-> ( ( theta ` x ) / x ) ) e. O(1) |
| 37 |
36
|
a1i |
|- ( T. -> ( x e. RR+ |-> ( ( theta ` x ) / x ) ) e. O(1) ) |
| 38 |
35 37
|
o1res2 |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) e. O(1) ) |
| 39 |
|
chpchtlim |
|- ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ~~>r 1 |
| 40 |
|
rlimo1 |
|- ( ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ~~>r 1 -> ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) e. O(1) ) |
| 41 |
39 40
|
ax-mp |
|- ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) e. O(1) |
| 42 |
|
o1mul |
|- ( ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) e. O(1) /\ ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) e. O(1) ) -> ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) e. O(1) ) |
| 43 |
38 41 42
|
sylancl |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) e. O(1) ) |
| 44 |
34 43
|
eqeltrd |
|- ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) e. O(1) ) |
| 45 |
|
rerpdivcl |
|- ( ( ( psi ` x ) e. RR /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. RR ) |
| 46 |
18 45
|
mpancom |
|- ( x e. RR+ -> ( ( psi ` x ) / x ) e. RR ) |
| 47 |
46
|
recnd |
|- ( x e. RR+ -> ( ( psi ` x ) / x ) e. CC ) |
| 48 |
47
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. CC ) |
| 49 |
48
|
fmpttd |
|- ( T. -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) : RR+ --> CC ) |
| 50 |
|
rpssre |
|- RR+ C_ RR |
| 51 |
50
|
a1i |
|- ( T. -> RR+ C_ RR ) |
| 52 |
1
|
a1i |
|- ( T. -> 2 e. RR ) |
| 53 |
49 51 52
|
o1resb |
|- ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) <-> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) e. O(1) ) ) |
| 54 |
44 53
|
mpbird |
|- ( T. -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) ) |
| 55 |
54
|
mptru |
|- ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) |