| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chtcl |
|- ( A e. RR -> ( theta ` A ) e. RR ) |
| 2 |
1
|
adantr |
|- ( ( A e. RR /\ 2 <_ A ) -> ( theta ` A ) e. RR ) |
| 3 |
|
0red |
|- ( ( A e. RR /\ 2 <_ A ) -> 0 e. RR ) |
| 4 |
|
2re |
|- 2 e. RR |
| 5 |
|
1lt2 |
|- 1 < 2 |
| 6 |
|
rplogcl |
|- ( ( 2 e. RR /\ 1 < 2 ) -> ( log ` 2 ) e. RR+ ) |
| 7 |
4 5 6
|
mp2an |
|- ( log ` 2 ) e. RR+ |
| 8 |
|
rpre |
|- ( ( log ` 2 ) e. RR+ -> ( log ` 2 ) e. RR ) |
| 9 |
7 8
|
mp1i |
|- ( ( A e. RR /\ 2 <_ A ) -> ( log ` 2 ) e. RR ) |
| 10 |
|
rpgt0 |
|- ( ( log ` 2 ) e. RR+ -> 0 < ( log ` 2 ) ) |
| 11 |
7 10
|
mp1i |
|- ( ( A e. RR /\ 2 <_ A ) -> 0 < ( log ` 2 ) ) |
| 12 |
|
cht2 |
|- ( theta ` 2 ) = ( log ` 2 ) |
| 13 |
|
chtwordi |
|- ( ( 2 e. RR /\ A e. RR /\ 2 <_ A ) -> ( theta ` 2 ) <_ ( theta ` A ) ) |
| 14 |
4 13
|
mp3an1 |
|- ( ( A e. RR /\ 2 <_ A ) -> ( theta ` 2 ) <_ ( theta ` A ) ) |
| 15 |
12 14
|
eqbrtrrid |
|- ( ( A e. RR /\ 2 <_ A ) -> ( log ` 2 ) <_ ( theta ` A ) ) |
| 16 |
3 9 2 11 15
|
ltletrd |
|- ( ( A e. RR /\ 2 <_ A ) -> 0 < ( theta ` A ) ) |
| 17 |
2 16
|
elrpd |
|- ( ( A e. RR /\ 2 <_ A ) -> ( theta ` A ) e. RR+ ) |