Metamath Proof Explorer


Theorem chtrpcl

Description: Closure of the Chebyshev function in the positive reals. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chtrpcl
|- ( ( A e. RR /\ 2 <_ A ) -> ( theta ` A ) e. RR+ )

Proof

Step Hyp Ref Expression
1 chtcl
 |-  ( A e. RR -> ( theta ` A ) e. RR )
2 1 adantr
 |-  ( ( A e. RR /\ 2 <_ A ) -> ( theta ` A ) e. RR )
3 0red
 |-  ( ( A e. RR /\ 2 <_ A ) -> 0 e. RR )
4 2re
 |-  2 e. RR
5 1lt2
 |-  1 < 2
6 rplogcl
 |-  ( ( 2 e. RR /\ 1 < 2 ) -> ( log ` 2 ) e. RR+ )
7 4 5 6 mp2an
 |-  ( log ` 2 ) e. RR+
8 rpre
 |-  ( ( log ` 2 ) e. RR+ -> ( log ` 2 ) e. RR )
9 7 8 mp1i
 |-  ( ( A e. RR /\ 2 <_ A ) -> ( log ` 2 ) e. RR )
10 rpgt0
 |-  ( ( log ` 2 ) e. RR+ -> 0 < ( log ` 2 ) )
11 7 10 mp1i
 |-  ( ( A e. RR /\ 2 <_ A ) -> 0 < ( log ` 2 ) )
12 cht2
 |-  ( theta ` 2 ) = ( log ` 2 )
13 chtwordi
 |-  ( ( 2 e. RR /\ A e. RR /\ 2 <_ A ) -> ( theta ` 2 ) <_ ( theta ` A ) )
14 4 13 mp3an1
 |-  ( ( A e. RR /\ 2 <_ A ) -> ( theta ` 2 ) <_ ( theta ` A ) )
15 12 14 eqbrtrrid
 |-  ( ( A e. RR /\ 2 <_ A ) -> ( log ` 2 ) <_ ( theta ` A ) )
16 3 9 2 11 15 ltletrd
 |-  ( ( A e. RR /\ 2 <_ A ) -> 0 < ( theta ` A ) )
17 2 16 elrpd
 |-  ( ( A e. RR /\ 2 <_ A ) -> ( theta ` A ) e. RR+ )