| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
|- 2 e. RR |
| 2 |
|
lenlt |
|- ( ( 2 e. RR /\ A e. RR ) -> ( 2 <_ A <-> -. A < 2 ) ) |
| 3 |
1 2
|
mpan |
|- ( A e. RR -> ( 2 <_ A <-> -. A < 2 ) ) |
| 4 |
|
ppinncl |
|- ( ( A e. RR /\ 2 <_ A ) -> ( ppi ` A ) e. NN ) |
| 5 |
4
|
nnne0d |
|- ( ( A e. RR /\ 2 <_ A ) -> ( ppi ` A ) =/= 0 ) |
| 6 |
5
|
ex |
|- ( A e. RR -> ( 2 <_ A -> ( ppi ` A ) =/= 0 ) ) |
| 7 |
3 6
|
sylbird |
|- ( A e. RR -> ( -. A < 2 -> ( ppi ` A ) =/= 0 ) ) |
| 8 |
7
|
necon4bd |
|- ( A e. RR -> ( ( ppi ` A ) = 0 -> A < 2 ) ) |
| 9 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
| 10 |
9
|
adantr |
|- ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) e. RR ) |
| 11 |
|
1red |
|- ( ( A e. RR /\ A < 2 ) -> 1 e. RR ) |
| 12 |
|
2z |
|- 2 e. ZZ |
| 13 |
|
fllt |
|- ( ( A e. RR /\ 2 e. ZZ ) -> ( A < 2 <-> ( |_ ` A ) < 2 ) ) |
| 14 |
12 13
|
mpan2 |
|- ( A e. RR -> ( A < 2 <-> ( |_ ` A ) < 2 ) ) |
| 15 |
14
|
biimpa |
|- ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) < 2 ) |
| 16 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 17 |
15 16
|
breqtrdi |
|- ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) < ( 1 + 1 ) ) |
| 18 |
|
flcl |
|- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
| 19 |
18
|
adantr |
|- ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) e. ZZ ) |
| 20 |
|
1z |
|- 1 e. ZZ |
| 21 |
|
zleltp1 |
|- ( ( ( |_ ` A ) e. ZZ /\ 1 e. ZZ ) -> ( ( |_ ` A ) <_ 1 <-> ( |_ ` A ) < ( 1 + 1 ) ) ) |
| 22 |
19 20 21
|
sylancl |
|- ( ( A e. RR /\ A < 2 ) -> ( ( |_ ` A ) <_ 1 <-> ( |_ ` A ) < ( 1 + 1 ) ) ) |
| 23 |
17 22
|
mpbird |
|- ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) <_ 1 ) |
| 24 |
|
ppiwordi |
|- ( ( ( |_ ` A ) e. RR /\ 1 e. RR /\ ( |_ ` A ) <_ 1 ) -> ( ppi ` ( |_ ` A ) ) <_ ( ppi ` 1 ) ) |
| 25 |
10 11 23 24
|
syl3anc |
|- ( ( A e. RR /\ A < 2 ) -> ( ppi ` ( |_ ` A ) ) <_ ( ppi ` 1 ) ) |
| 26 |
|
ppifl |
|- ( A e. RR -> ( ppi ` ( |_ ` A ) ) = ( ppi ` A ) ) |
| 27 |
26
|
adantr |
|- ( ( A e. RR /\ A < 2 ) -> ( ppi ` ( |_ ` A ) ) = ( ppi ` A ) ) |
| 28 |
|
ppi1 |
|- ( ppi ` 1 ) = 0 |
| 29 |
28
|
a1i |
|- ( ( A e. RR /\ A < 2 ) -> ( ppi ` 1 ) = 0 ) |
| 30 |
25 27 29
|
3brtr3d |
|- ( ( A e. RR /\ A < 2 ) -> ( ppi ` A ) <_ 0 ) |
| 31 |
|
ppicl |
|- ( A e. RR -> ( ppi ` A ) e. NN0 ) |
| 32 |
31
|
adantr |
|- ( ( A e. RR /\ A < 2 ) -> ( ppi ` A ) e. NN0 ) |
| 33 |
|
nn0le0eq0 |
|- ( ( ppi ` A ) e. NN0 -> ( ( ppi ` A ) <_ 0 <-> ( ppi ` A ) = 0 ) ) |
| 34 |
32 33
|
syl |
|- ( ( A e. RR /\ A < 2 ) -> ( ( ppi ` A ) <_ 0 <-> ( ppi ` A ) = 0 ) ) |
| 35 |
30 34
|
mpbid |
|- ( ( A e. RR /\ A < 2 ) -> ( ppi ` A ) = 0 ) |
| 36 |
35
|
ex |
|- ( A e. RR -> ( A < 2 -> ( ppi ` A ) = 0 ) ) |
| 37 |
8 36
|
impbid |
|- ( A e. RR -> ( ( ppi ` A ) = 0 <-> A < 2 ) ) |