| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> B e. RR ) |
| 2 |
|
ppifi |
|- ( B e. RR -> ( ( 0 [,] B ) i^i Prime ) e. Fin ) |
| 3 |
1 2
|
syl |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( 0 [,] B ) i^i Prime ) e. Fin ) |
| 4 |
|
0red |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> 0 e. RR ) |
| 5 |
|
0le0 |
|- 0 <_ 0 |
| 6 |
5
|
a1i |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> 0 <_ 0 ) |
| 7 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> A <_ B ) |
| 8 |
|
iccss |
|- ( ( ( 0 e. RR /\ B e. RR ) /\ ( 0 <_ 0 /\ A <_ B ) ) -> ( 0 [,] A ) C_ ( 0 [,] B ) ) |
| 9 |
4 1 6 7 8
|
syl22anc |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( 0 [,] A ) C_ ( 0 [,] B ) ) |
| 10 |
9
|
ssrind |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( 0 [,] A ) i^i Prime ) C_ ( ( 0 [,] B ) i^i Prime ) ) |
| 11 |
|
ssdomg |
|- ( ( ( 0 [,] B ) i^i Prime ) e. Fin -> ( ( ( 0 [,] A ) i^i Prime ) C_ ( ( 0 [,] B ) i^i Prime ) -> ( ( 0 [,] A ) i^i Prime ) ~<_ ( ( 0 [,] B ) i^i Prime ) ) ) |
| 12 |
3 10 11
|
sylc |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( 0 [,] A ) i^i Prime ) ~<_ ( ( 0 [,] B ) i^i Prime ) ) |
| 13 |
|
ppifi |
|- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) e. Fin ) |
| 14 |
13
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( 0 [,] A ) i^i Prime ) e. Fin ) |
| 15 |
|
hashdom |
|- ( ( ( ( 0 [,] A ) i^i Prime ) e. Fin /\ ( ( 0 [,] B ) i^i Prime ) e. Fin ) -> ( ( # ` ( ( 0 [,] A ) i^i Prime ) ) <_ ( # ` ( ( 0 [,] B ) i^i Prime ) ) <-> ( ( 0 [,] A ) i^i Prime ) ~<_ ( ( 0 [,] B ) i^i Prime ) ) ) |
| 16 |
14 3 15
|
syl2anc |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ( # ` ( ( 0 [,] A ) i^i Prime ) ) <_ ( # ` ( ( 0 [,] B ) i^i Prime ) ) <-> ( ( 0 [,] A ) i^i Prime ) ~<_ ( ( 0 [,] B ) i^i Prime ) ) ) |
| 17 |
12 16
|
mpbird |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( # ` ( ( 0 [,] A ) i^i Prime ) ) <_ ( # ` ( ( 0 [,] B ) i^i Prime ) ) ) |
| 18 |
|
ppival |
|- ( A e. RR -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) ) |
| 19 |
18
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ppi ` A ) = ( # ` ( ( 0 [,] A ) i^i Prime ) ) ) |
| 20 |
|
ppival |
|- ( B e. RR -> ( ppi ` B ) = ( # ` ( ( 0 [,] B ) i^i Prime ) ) ) |
| 21 |
1 20
|
syl |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ppi ` B ) = ( # ` ( ( 0 [,] B ) i^i Prime ) ) ) |
| 22 |
17 19 21
|
3brtr4d |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( ppi ` A ) <_ ( ppi ` B ) ) |