| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpre |
|- ( A e. RR+ -> A e. RR ) |
| 2 |
|
ppicl |
|- ( A e. RR -> ( ppi ` A ) e. NN0 ) |
| 3 |
1 2
|
syl |
|- ( A e. RR+ -> ( ppi ` A ) e. NN0 ) |
| 4 |
3
|
nn0red |
|- ( A e. RR+ -> ( ppi ` A ) e. RR ) |
| 5 |
4
|
adantr |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( ppi ` A ) e. RR ) |
| 6 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
| 7 |
1 6
|
syl |
|- ( A e. RR+ -> ( |_ ` A ) e. RR ) |
| 8 |
7
|
adantr |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( |_ ` A ) e. RR ) |
| 9 |
1
|
adantr |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> A e. RR ) |
| 10 |
|
fzfi |
|- ( 1 ... ( |_ ` A ) ) e. Fin |
| 11 |
|
inss1 |
|- ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C_ ( 2 ... ( |_ ` A ) ) |
| 12 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
| 13 |
|
fzss1 |
|- ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` A ) ) ) |
| 14 |
12 13
|
mp1i |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( 2 ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` A ) ) ) |
| 15 |
|
simpr |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( |_ ` A ) e. NN ) |
| 16 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 17 |
15 16
|
eleqtrdi |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( |_ ` A ) e. ( ZZ>= ` 1 ) ) |
| 18 |
|
eluzfz1 |
|- ( ( |_ ` A ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( |_ ` A ) ) ) |
| 19 |
17 18
|
syl |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> 1 e. ( 1 ... ( |_ ` A ) ) ) |
| 20 |
|
1lt2 |
|- 1 < 2 |
| 21 |
|
1re |
|- 1 e. RR |
| 22 |
|
2re |
|- 2 e. RR |
| 23 |
21 22
|
ltnlei |
|- ( 1 < 2 <-> -. 2 <_ 1 ) |
| 24 |
20 23
|
mpbi |
|- -. 2 <_ 1 |
| 25 |
|
elfzle1 |
|- ( 1 e. ( 2 ... ( |_ ` A ) ) -> 2 <_ 1 ) |
| 26 |
24 25
|
mto |
|- -. 1 e. ( 2 ... ( |_ ` A ) ) |
| 27 |
|
nelne1 |
|- ( ( 1 e. ( 1 ... ( |_ ` A ) ) /\ -. 1 e. ( 2 ... ( |_ ` A ) ) ) -> ( 1 ... ( |_ ` A ) ) =/= ( 2 ... ( |_ ` A ) ) ) |
| 28 |
19 26 27
|
sylancl |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( 1 ... ( |_ ` A ) ) =/= ( 2 ... ( |_ ` A ) ) ) |
| 29 |
28
|
necomd |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( 2 ... ( |_ ` A ) ) =/= ( 1 ... ( |_ ` A ) ) ) |
| 30 |
|
df-pss |
|- ( ( 2 ... ( |_ ` A ) ) C. ( 1 ... ( |_ ` A ) ) <-> ( ( 2 ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` A ) ) /\ ( 2 ... ( |_ ` A ) ) =/= ( 1 ... ( |_ ` A ) ) ) ) |
| 31 |
14 29 30
|
sylanbrc |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( 2 ... ( |_ ` A ) ) C. ( 1 ... ( |_ ` A ) ) ) |
| 32 |
|
sspsstr |
|- ( ( ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C_ ( 2 ... ( |_ ` A ) ) /\ ( 2 ... ( |_ ` A ) ) C. ( 1 ... ( |_ ` A ) ) ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C. ( 1 ... ( |_ ` A ) ) ) |
| 33 |
11 31 32
|
sylancr |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C. ( 1 ... ( |_ ` A ) ) ) |
| 34 |
|
php3 |
|- ( ( ( 1 ... ( |_ ` A ) ) e. Fin /\ ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C. ( 1 ... ( |_ ` A ) ) ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ~< ( 1 ... ( |_ ` A ) ) ) |
| 35 |
10 33 34
|
sylancr |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ~< ( 1 ... ( |_ ` A ) ) ) |
| 36 |
|
fzfi |
|- ( 2 ... ( |_ ` A ) ) e. Fin |
| 37 |
|
ssfi |
|- ( ( ( 2 ... ( |_ ` A ) ) e. Fin /\ ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C_ ( 2 ... ( |_ ` A ) ) ) -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) e. Fin ) |
| 38 |
36 11 37
|
mp2an |
|- ( ( 2 ... ( |_ ` A ) ) i^i Prime ) e. Fin |
| 39 |
|
hashsdom |
|- ( ( ( ( 2 ... ( |_ ` A ) ) i^i Prime ) e. Fin /\ ( 1 ... ( |_ ` A ) ) e. Fin ) -> ( ( # ` ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) < ( # ` ( 1 ... ( |_ ` A ) ) ) <-> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ~< ( 1 ... ( |_ ` A ) ) ) ) |
| 40 |
38 10 39
|
mp2an |
|- ( ( # ` ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) < ( # ` ( 1 ... ( |_ ` A ) ) ) <-> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ~< ( 1 ... ( |_ ` A ) ) ) |
| 41 |
35 40
|
sylibr |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( # ` ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) < ( # ` ( 1 ... ( |_ ` A ) ) ) ) |
| 42 |
1
|
flcld |
|- ( A e. RR+ -> ( |_ ` A ) e. ZZ ) |
| 43 |
|
ppival2 |
|- ( ( |_ ` A ) e. ZZ -> ( ppi ` ( |_ ` A ) ) = ( # ` ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) ) |
| 44 |
42 43
|
syl |
|- ( A e. RR+ -> ( ppi ` ( |_ ` A ) ) = ( # ` ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) ) |
| 45 |
|
ppifl |
|- ( A e. RR -> ( ppi ` ( |_ ` A ) ) = ( ppi ` A ) ) |
| 46 |
1 45
|
syl |
|- ( A e. RR+ -> ( ppi ` ( |_ ` A ) ) = ( ppi ` A ) ) |
| 47 |
44 46
|
eqtr3d |
|- ( A e. RR+ -> ( # ` ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) = ( ppi ` A ) ) |
| 48 |
47
|
adantr |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( # ` ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) = ( ppi ` A ) ) |
| 49 |
|
rpge0 |
|- ( A e. RR+ -> 0 <_ A ) |
| 50 |
|
flge0nn0 |
|- ( ( A e. RR /\ 0 <_ A ) -> ( |_ ` A ) e. NN0 ) |
| 51 |
1 49 50
|
syl2anc |
|- ( A e. RR+ -> ( |_ ` A ) e. NN0 ) |
| 52 |
|
hashfz1 |
|- ( ( |_ ` A ) e. NN0 -> ( # ` ( 1 ... ( |_ ` A ) ) ) = ( |_ ` A ) ) |
| 53 |
51 52
|
syl |
|- ( A e. RR+ -> ( # ` ( 1 ... ( |_ ` A ) ) ) = ( |_ ` A ) ) |
| 54 |
53
|
adantr |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( # ` ( 1 ... ( |_ ` A ) ) ) = ( |_ ` A ) ) |
| 55 |
41 48 54
|
3brtr3d |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( ppi ` A ) < ( |_ ` A ) ) |
| 56 |
|
flle |
|- ( A e. RR -> ( |_ ` A ) <_ A ) |
| 57 |
9 56
|
syl |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( |_ ` A ) <_ A ) |
| 58 |
5 8 9 55 57
|
ltletrd |
|- ( ( A e. RR+ /\ ( |_ ` A ) e. NN ) -> ( ppi ` A ) < A ) |
| 59 |
46
|
adantr |
|- ( ( A e. RR+ /\ ( |_ ` A ) = 0 ) -> ( ppi ` ( |_ ` A ) ) = ( ppi ` A ) ) |
| 60 |
|
simpr |
|- ( ( A e. RR+ /\ ( |_ ` A ) = 0 ) -> ( |_ ` A ) = 0 ) |
| 61 |
60
|
fveq2d |
|- ( ( A e. RR+ /\ ( |_ ` A ) = 0 ) -> ( ppi ` ( |_ ` A ) ) = ( ppi ` 0 ) ) |
| 62 |
|
2pos |
|- 0 < 2 |
| 63 |
|
0re |
|- 0 e. RR |
| 64 |
|
ppieq0 |
|- ( 0 e. RR -> ( ( ppi ` 0 ) = 0 <-> 0 < 2 ) ) |
| 65 |
63 64
|
ax-mp |
|- ( ( ppi ` 0 ) = 0 <-> 0 < 2 ) |
| 66 |
62 65
|
mpbir |
|- ( ppi ` 0 ) = 0 |
| 67 |
61 66
|
eqtrdi |
|- ( ( A e. RR+ /\ ( |_ ` A ) = 0 ) -> ( ppi ` ( |_ ` A ) ) = 0 ) |
| 68 |
59 67
|
eqtr3d |
|- ( ( A e. RR+ /\ ( |_ ` A ) = 0 ) -> ( ppi ` A ) = 0 ) |
| 69 |
|
rpgt0 |
|- ( A e. RR+ -> 0 < A ) |
| 70 |
69
|
adantr |
|- ( ( A e. RR+ /\ ( |_ ` A ) = 0 ) -> 0 < A ) |
| 71 |
68 70
|
eqbrtrd |
|- ( ( A e. RR+ /\ ( |_ ` A ) = 0 ) -> ( ppi ` A ) < A ) |
| 72 |
|
elnn0 |
|- ( ( |_ ` A ) e. NN0 <-> ( ( |_ ` A ) e. NN \/ ( |_ ` A ) = 0 ) ) |
| 73 |
51 72
|
sylib |
|- ( A e. RR+ -> ( ( |_ ` A ) e. NN \/ ( |_ ` A ) = 0 ) ) |
| 74 |
58 71 73
|
mpjaodan |
|- ( A e. RR+ -> ( ppi ` A ) < A ) |