| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmorcht.1 |
|- F = ( n e. NN |-> if ( n e. Prime , n , 1 ) ) |
| 2 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
| 3 |
|
chtval |
|- ( A e. RR -> ( theta ` A ) = sum_ k e. ( ( 0 [,] A ) i^i Prime ) ( log ` k ) ) |
| 4 |
2 3
|
syl |
|- ( A e. NN -> ( theta ` A ) = sum_ k e. ( ( 0 [,] A ) i^i Prime ) ( log ` k ) ) |
| 5 |
|
2eluzge1 |
|- 2 e. ( ZZ>= ` 1 ) |
| 6 |
|
ppisval2 |
|- ( ( A e. RR /\ 2 e. ( ZZ>= ` 1 ) ) -> ( ( 0 [,] A ) i^i Prime ) = ( ( 1 ... ( |_ ` A ) ) i^i Prime ) ) |
| 7 |
2 5 6
|
sylancl |
|- ( A e. NN -> ( ( 0 [,] A ) i^i Prime ) = ( ( 1 ... ( |_ ` A ) ) i^i Prime ) ) |
| 8 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
| 9 |
|
flid |
|- ( A e. ZZ -> ( |_ ` A ) = A ) |
| 10 |
8 9
|
syl |
|- ( A e. NN -> ( |_ ` A ) = A ) |
| 11 |
10
|
oveq2d |
|- ( A e. NN -> ( 1 ... ( |_ ` A ) ) = ( 1 ... A ) ) |
| 12 |
11
|
ineq1d |
|- ( A e. NN -> ( ( 1 ... ( |_ ` A ) ) i^i Prime ) = ( ( 1 ... A ) i^i Prime ) ) |
| 13 |
7 12
|
eqtrd |
|- ( A e. NN -> ( ( 0 [,] A ) i^i Prime ) = ( ( 1 ... A ) i^i Prime ) ) |
| 14 |
13
|
sumeq1d |
|- ( A e. NN -> sum_ k e. ( ( 0 [,] A ) i^i Prime ) ( log ` k ) = sum_ k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) ) |
| 15 |
|
inss1 |
|- ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) |
| 16 |
|
elinel1 |
|- ( k e. ( ( 1 ... A ) i^i Prime ) -> k e. ( 1 ... A ) ) |
| 17 |
|
elfznn |
|- ( k e. ( 1 ... A ) -> k e. NN ) |
| 18 |
17
|
adantl |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> k e. NN ) |
| 19 |
18
|
nnrpd |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> k e. RR+ ) |
| 20 |
19
|
relogcld |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( log ` k ) e. RR ) |
| 21 |
20
|
recnd |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( log ` k ) e. CC ) |
| 22 |
16 21
|
sylan2 |
|- ( ( A e. NN /\ k e. ( ( 1 ... A ) i^i Prime ) ) -> ( log ` k ) e. CC ) |
| 23 |
22
|
ralrimiva |
|- ( A e. NN -> A. k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) e. CC ) |
| 24 |
|
fzfi |
|- ( 1 ... A ) e. Fin |
| 25 |
24
|
olci |
|- ( ( 1 ... A ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... A ) e. Fin ) |
| 26 |
|
sumss2 |
|- ( ( ( ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) /\ A. k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) e. CC ) /\ ( ( 1 ... A ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... A ) e. Fin ) ) -> sum_ k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) |
| 27 |
25 26
|
mpan2 |
|- ( ( ( ( 1 ... A ) i^i Prime ) C_ ( 1 ... A ) /\ A. k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) e. CC ) -> sum_ k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) |
| 28 |
15 23 27
|
sylancr |
|- ( A e. NN -> sum_ k e. ( ( 1 ... A ) i^i Prime ) ( log ` k ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) |
| 29 |
14 28
|
eqtrd |
|- ( A e. NN -> sum_ k e. ( ( 0 [,] A ) i^i Prime ) ( log ` k ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) |
| 30 |
4 29
|
eqtrd |
|- ( A e. NN -> ( theta ` A ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) |
| 31 |
|
elin |
|- ( k e. ( ( 1 ... A ) i^i Prime ) <-> ( k e. ( 1 ... A ) /\ k e. Prime ) ) |
| 32 |
31
|
baibr |
|- ( k e. ( 1 ... A ) -> ( k e. Prime <-> k e. ( ( 1 ... A ) i^i Prime ) ) ) |
| 33 |
32
|
ifbid |
|- ( k e. ( 1 ... A ) -> if ( k e. Prime , ( log ` k ) , 0 ) = if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) ) |
| 34 |
33
|
sumeq2i |
|- sum_ k e. ( 1 ... A ) if ( k e. Prime , ( log ` k ) , 0 ) = sum_ k e. ( 1 ... A ) if ( k e. ( ( 1 ... A ) i^i Prime ) , ( log ` k ) , 0 ) |
| 35 |
30 34
|
eqtr4di |
|- ( A e. NN -> ( theta ` A ) = sum_ k e. ( 1 ... A ) if ( k e. Prime , ( log ` k ) , 0 ) ) |
| 36 |
|
eleq1w |
|- ( n = k -> ( n e. Prime <-> k e. Prime ) ) |
| 37 |
|
fveq2 |
|- ( n = k -> ( log ` n ) = ( log ` k ) ) |
| 38 |
36 37
|
ifbieq1d |
|- ( n = k -> if ( n e. Prime , ( log ` n ) , 0 ) = if ( k e. Prime , ( log ` k ) , 0 ) ) |
| 39 |
|
eqid |
|- ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) = ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) |
| 40 |
|
fvex |
|- ( log ` k ) e. _V |
| 41 |
|
0cn |
|- 0 e. CC |
| 42 |
41
|
elexi |
|- 0 e. _V |
| 43 |
40 42
|
ifex |
|- if ( k e. Prime , ( log ` k ) , 0 ) e. _V |
| 44 |
38 39 43
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) = if ( k e. Prime , ( log ` k ) , 0 ) ) |
| 45 |
18 44
|
syl |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) = if ( k e. Prime , ( log ` k ) , 0 ) ) |
| 46 |
|
elnnuz |
|- ( A e. NN <-> A e. ( ZZ>= ` 1 ) ) |
| 47 |
46
|
biimpi |
|- ( A e. NN -> A e. ( ZZ>= ` 1 ) ) |
| 48 |
|
ifcl |
|- ( ( ( log ` k ) e. CC /\ 0 e. CC ) -> if ( k e. Prime , ( log ` k ) , 0 ) e. CC ) |
| 49 |
21 41 48
|
sylancl |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> if ( k e. Prime , ( log ` k ) , 0 ) e. CC ) |
| 50 |
45 47 49
|
fsumser |
|- ( A e. NN -> sum_ k e. ( 1 ... A ) if ( k e. Prime , ( log ` k ) , 0 ) = ( seq 1 ( + , ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ) ` A ) ) |
| 51 |
35 50
|
eqtrd |
|- ( A e. NN -> ( theta ` A ) = ( seq 1 ( + , ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ) ` A ) ) |
| 52 |
51
|
fveq2d |
|- ( A e. NN -> ( exp ` ( theta ` A ) ) = ( exp ` ( seq 1 ( + , ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ) ` A ) ) ) |
| 53 |
|
addcl |
|- ( ( k e. CC /\ p e. CC ) -> ( k + p ) e. CC ) |
| 54 |
53
|
adantl |
|- ( ( A e. NN /\ ( k e. CC /\ p e. CC ) ) -> ( k + p ) e. CC ) |
| 55 |
45 49
|
eqeltrd |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) e. CC ) |
| 56 |
|
efadd |
|- ( ( k e. CC /\ p e. CC ) -> ( exp ` ( k + p ) ) = ( ( exp ` k ) x. ( exp ` p ) ) ) |
| 57 |
56
|
adantl |
|- ( ( A e. NN /\ ( k e. CC /\ p e. CC ) ) -> ( exp ` ( k + p ) ) = ( ( exp ` k ) x. ( exp ` p ) ) ) |
| 58 |
|
1nn |
|- 1 e. NN |
| 59 |
|
ifcl |
|- ( ( k e. NN /\ 1 e. NN ) -> if ( k e. Prime , k , 1 ) e. NN ) |
| 60 |
18 58 59
|
sylancl |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> if ( k e. Prime , k , 1 ) e. NN ) |
| 61 |
60
|
nnrpd |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> if ( k e. Prime , k , 1 ) e. RR+ ) |
| 62 |
61
|
reeflogd |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( exp ` ( log ` if ( k e. Prime , k , 1 ) ) ) = if ( k e. Prime , k , 1 ) ) |
| 63 |
|
fvif |
|- ( log ` if ( k e. Prime , k , 1 ) ) = if ( k e. Prime , ( log ` k ) , ( log ` 1 ) ) |
| 64 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 65 |
|
ifeq2 |
|- ( ( log ` 1 ) = 0 -> if ( k e. Prime , ( log ` k ) , ( log ` 1 ) ) = if ( k e. Prime , ( log ` k ) , 0 ) ) |
| 66 |
64 65
|
ax-mp |
|- if ( k e. Prime , ( log ` k ) , ( log ` 1 ) ) = if ( k e. Prime , ( log ` k ) , 0 ) |
| 67 |
63 66
|
eqtri |
|- ( log ` if ( k e. Prime , k , 1 ) ) = if ( k e. Prime , ( log ` k ) , 0 ) |
| 68 |
45 67
|
eqtr4di |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) = ( log ` if ( k e. Prime , k , 1 ) ) ) |
| 69 |
68
|
fveq2d |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( exp ` ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) ) = ( exp ` ( log ` if ( k e. Prime , k , 1 ) ) ) ) |
| 70 |
|
id |
|- ( n = k -> n = k ) |
| 71 |
36 70
|
ifbieq1d |
|- ( n = k -> if ( n e. Prime , n , 1 ) = if ( k e. Prime , k , 1 ) ) |
| 72 |
|
vex |
|- k e. _V |
| 73 |
58
|
elexi |
|- 1 e. _V |
| 74 |
72 73
|
ifex |
|- if ( k e. Prime , k , 1 ) e. _V |
| 75 |
71 1 74
|
fvmpt |
|- ( k e. NN -> ( F ` k ) = if ( k e. Prime , k , 1 ) ) |
| 76 |
18 75
|
syl |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( F ` k ) = if ( k e. Prime , k , 1 ) ) |
| 77 |
62 69 76
|
3eqtr4d |
|- ( ( A e. NN /\ k e. ( 1 ... A ) ) -> ( exp ` ( ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ` k ) ) = ( F ` k ) ) |
| 78 |
54 55 47 57 77
|
seqhomo |
|- ( A e. NN -> ( exp ` ( seq 1 ( + , ( n e. NN |-> if ( n e. Prime , ( log ` n ) , 0 ) ) ) ` A ) ) = ( seq 1 ( x. , F ) ` A ) ) |
| 79 |
52 78
|
eqtrd |
|- ( A e. NN -> ( exp ` ( theta ` A ) ) = ( seq 1 ( x. , F ) ` A ) ) |