| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmorcht.1 |
|
| 2 |
|
nnre |
|
| 3 |
|
chtval |
|
| 4 |
2 3
|
syl |
|
| 5 |
|
2eluzge1 |
|
| 6 |
|
ppisval2 |
|
| 7 |
2 5 6
|
sylancl |
|
| 8 |
|
nnz |
|
| 9 |
|
flid |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
oveq2d |
|
| 12 |
11
|
ineq1d |
|
| 13 |
7 12
|
eqtrd |
|
| 14 |
13
|
sumeq1d |
|
| 15 |
|
inss1 |
|
| 16 |
|
elinel1 |
|
| 17 |
|
elfznn |
|
| 18 |
17
|
adantl |
|
| 19 |
18
|
nnrpd |
|
| 20 |
19
|
relogcld |
|
| 21 |
20
|
recnd |
|
| 22 |
16 21
|
sylan2 |
|
| 23 |
22
|
ralrimiva |
|
| 24 |
|
fzfi |
|
| 25 |
24
|
olci |
|
| 26 |
|
sumss2 |
|
| 27 |
25 26
|
mpan2 |
|
| 28 |
15 23 27
|
sylancr |
|
| 29 |
14 28
|
eqtrd |
|
| 30 |
4 29
|
eqtrd |
|
| 31 |
|
elin |
|
| 32 |
31
|
baibr |
|
| 33 |
32
|
ifbid |
|
| 34 |
33
|
sumeq2i |
|
| 35 |
30 34
|
eqtr4di |
|
| 36 |
|
eleq1w |
|
| 37 |
|
fveq2 |
|
| 38 |
36 37
|
ifbieq1d |
|
| 39 |
|
eqid |
|
| 40 |
|
fvex |
|
| 41 |
|
0cn |
|
| 42 |
41
|
elexi |
|
| 43 |
40 42
|
ifex |
|
| 44 |
38 39 43
|
fvmpt |
|
| 45 |
18 44
|
syl |
|
| 46 |
|
elnnuz |
|
| 47 |
46
|
biimpi |
|
| 48 |
|
ifcl |
|
| 49 |
21 41 48
|
sylancl |
|
| 50 |
45 47 49
|
fsumser |
|
| 51 |
35 50
|
eqtrd |
|
| 52 |
51
|
fveq2d |
|
| 53 |
|
addcl |
|
| 54 |
53
|
adantl |
|
| 55 |
45 49
|
eqeltrd |
|
| 56 |
|
efadd |
|
| 57 |
56
|
adantl |
|
| 58 |
|
1nn |
|
| 59 |
|
ifcl |
|
| 60 |
18 58 59
|
sylancl |
|
| 61 |
60
|
nnrpd |
|
| 62 |
61
|
reeflogd |
|
| 63 |
|
fvif |
|
| 64 |
|
log1 |
|
| 65 |
|
ifeq2 |
|
| 66 |
64 65
|
ax-mp |
|
| 67 |
63 66
|
eqtri |
|
| 68 |
45 67
|
eqtr4di |
|
| 69 |
68
|
fveq2d |
|
| 70 |
|
id |
|
| 71 |
36 70
|
ifbieq1d |
|
| 72 |
|
vex |
|
| 73 |
58
|
elexi |
|
| 74 |
72 73
|
ifex |
|
| 75 |
71 1 74
|
fvmpt |
|
| 76 |
18 75
|
syl |
|
| 77 |
62 69 76
|
3eqtr4d |
|
| 78 |
54 55 47 57 77
|
seqhomo |
|
| 79 |
52 78
|
eqtrd |
|