| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
|- 1 e. ZZ |
| 2 |
|
ppival2 |
|- ( 1 e. ZZ -> ( ppi ` 1 ) = ( # ` ( ( 2 ... 1 ) i^i Prime ) ) ) |
| 3 |
1 2
|
ax-mp |
|- ( ppi ` 1 ) = ( # ` ( ( 2 ... 1 ) i^i Prime ) ) |
| 4 |
|
1lt2 |
|- 1 < 2 |
| 5 |
|
2z |
|- 2 e. ZZ |
| 6 |
|
fzn |
|- ( ( 2 e. ZZ /\ 1 e. ZZ ) -> ( 1 < 2 <-> ( 2 ... 1 ) = (/) ) ) |
| 7 |
5 1 6
|
mp2an |
|- ( 1 < 2 <-> ( 2 ... 1 ) = (/) ) |
| 8 |
4 7
|
mpbi |
|- ( 2 ... 1 ) = (/) |
| 9 |
8
|
ineq1i |
|- ( ( 2 ... 1 ) i^i Prime ) = ( (/) i^i Prime ) |
| 10 |
|
0in |
|- ( (/) i^i Prime ) = (/) |
| 11 |
9 10
|
eqtri |
|- ( ( 2 ... 1 ) i^i Prime ) = (/) |
| 12 |
11
|
fveq2i |
|- ( # ` ( ( 2 ... 1 ) i^i Prime ) ) = ( # ` (/) ) |
| 13 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 14 |
12 13
|
eqtri |
|- ( # ` ( ( 2 ... 1 ) i^i Prime ) ) = 0 |
| 15 |
3 14
|
eqtri |
|- ( ppi ` 1 ) = 0 |