Metamath Proof Explorer


Theorem ppi1

Description: The prime-counting function ppi at 1 . (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion ppi1 π_1=0

Proof

Step Hyp Ref Expression
1 1z 1
2 ppival2 1π_1=21
3 1 2 ax-mp π_1=21
4 1lt2 1<2
5 2z 2
6 fzn 211<221=
7 5 1 6 mp2an 1<221=
8 4 7 mpbi 21=
9 8 ineq1i 21=
10 0in =
11 9 10 eqtri 21=
12 11 fveq2i 21=
13 hash0 =0
14 12 13 eqtri 21=0
15 3 14 eqtri π_1=0