| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
⊢ 1 ∈ ℤ |
| 2 |
|
ppival2 |
⊢ ( 1 ∈ ℤ → ( π ‘ 1 ) = ( ♯ ‘ ( ( 2 ... 1 ) ∩ ℙ ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( π ‘ 1 ) = ( ♯ ‘ ( ( 2 ... 1 ) ∩ ℙ ) ) |
| 4 |
|
1lt2 |
⊢ 1 < 2 |
| 5 |
|
2z |
⊢ 2 ∈ ℤ |
| 6 |
|
fzn |
⊢ ( ( 2 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 1 < 2 ↔ ( 2 ... 1 ) = ∅ ) ) |
| 7 |
5 1 6
|
mp2an |
⊢ ( 1 < 2 ↔ ( 2 ... 1 ) = ∅ ) |
| 8 |
4 7
|
mpbi |
⊢ ( 2 ... 1 ) = ∅ |
| 9 |
8
|
ineq1i |
⊢ ( ( 2 ... 1 ) ∩ ℙ ) = ( ∅ ∩ ℙ ) |
| 10 |
|
0in |
⊢ ( ∅ ∩ ℙ ) = ∅ |
| 11 |
9 10
|
eqtri |
⊢ ( ( 2 ... 1 ) ∩ ℙ ) = ∅ |
| 12 |
11
|
fveq2i |
⊢ ( ♯ ‘ ( ( 2 ... 1 ) ∩ ℙ ) ) = ( ♯ ‘ ∅ ) |
| 13 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 14 |
12 13
|
eqtri |
⊢ ( ♯ ‘ ( ( 2 ... 1 ) ∩ ℙ ) ) = 0 |
| 15 |
3 14
|
eqtri |
⊢ ( π ‘ 1 ) = 0 |