Metamath Proof Explorer


Theorem ppi1

Description: The prime-counting function ppi at 1 . (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion ppi1 ( π ‘ 1 ) = 0

Proof

Step Hyp Ref Expression
1 1z 1 ∈ ℤ
2 ppival2 ( 1 ∈ ℤ → ( π ‘ 1 ) = ( ♯ ‘ ( ( 2 ... 1 ) ∩ ℙ ) ) )
3 1 2 ax-mp ( π ‘ 1 ) = ( ♯ ‘ ( ( 2 ... 1 ) ∩ ℙ ) )
4 1lt2 1 < 2
5 2z 2 ∈ ℤ
6 fzn ( ( 2 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 1 < 2 ↔ ( 2 ... 1 ) = ∅ ) )
7 5 1 6 mp2an ( 1 < 2 ↔ ( 2 ... 1 ) = ∅ )
8 4 7 mpbi ( 2 ... 1 ) = ∅
9 8 ineq1i ( ( 2 ... 1 ) ∩ ℙ ) = ( ∅ ∩ ℙ )
10 0in ( ∅ ∩ ℙ ) = ∅
11 9 10 eqtri ( ( 2 ... 1 ) ∩ ℙ ) = ∅
12 11 fveq2i ( ♯ ‘ ( ( 2 ... 1 ) ∩ ℙ ) ) = ( ♯ ‘ ∅ )
13 hash0 ( ♯ ‘ ∅ ) = 0
14 12 13 eqtri ( ♯ ‘ ( ( 2 ... 1 ) ∩ ℙ ) ) = 0
15 3 14 eqtri ( π ‘ 1 ) = 0