| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
⊢ 2 ∈ ℝ |
| 2 |
|
elicopnf |
⊢ ( 2 ∈ ℝ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) ) |
| 4 |
|
chtrpcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) → ( θ ‘ 𝑥 ) ∈ ℝ+ ) |
| 5 |
3 4
|
sylbi |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( θ ‘ 𝑥 ) ∈ ℝ+ ) |
| 6 |
5
|
rpcnne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( θ ‘ 𝑥 ) ∈ ℂ ∧ ( θ ‘ 𝑥 ) ≠ 0 ) ) |
| 7 |
3
|
simplbi |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ℝ ) |
| 8 |
|
0red |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 0 ∈ ℝ ) |
| 9 |
1
|
a1i |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 2 ∈ ℝ ) |
| 10 |
|
2pos |
⊢ 0 < 2 |
| 11 |
10
|
a1i |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 0 < 2 ) |
| 12 |
3
|
simprbi |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 2 ≤ 𝑥 ) |
| 13 |
8 9 7 11 12
|
ltletrd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 0 < 𝑥 ) |
| 14 |
7 13
|
elrpd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ℝ+ ) |
| 15 |
14
|
rpcnne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 16 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 17 |
|
chpcl |
⊢ ( 𝑥 ∈ ℝ → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
| 18 |
16 17
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
| 19 |
18
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( ψ ‘ 𝑥 ) ∈ ℂ ) |
| 20 |
14 19
|
syl |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ψ ‘ 𝑥 ) ∈ ℂ ) |
| 21 |
|
dmdcan |
⊢ ( ( ( ( θ ‘ 𝑥 ) ∈ ℂ ∧ ( θ ‘ 𝑥 ) ≠ 0 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( ψ ‘ 𝑥 ) ∈ ℂ ) → ( ( ( θ ‘ 𝑥 ) / 𝑥 ) · ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) = ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) |
| 22 |
6 15 20 21
|
syl3anc |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ( θ ‘ 𝑥 ) / 𝑥 ) · ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) = ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) |
| 23 |
22
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ( θ ‘ 𝑥 ) / 𝑥 ) · ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) = ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) |
| 24 |
23
|
mpteq2dva |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ( θ ‘ 𝑥 ) / 𝑥 ) · ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ) |
| 25 |
|
ovexd |
⊢ ( ⊤ → ( 2 [,) +∞ ) ∈ V ) |
| 26 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( θ ‘ 𝑥 ) / 𝑥 ) ∈ V ) |
| 27 |
|
ovexd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ∈ V ) |
| 28 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ) |
| 29 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ) |
| 30 |
25 26 27 28 29
|
offval2 |
⊢ ( ⊤ → ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ∘f · ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ( θ ‘ 𝑥 ) / 𝑥 ) · ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ) ) |
| 31 |
14
|
ssriv |
⊢ ( 2 [,) +∞ ) ⊆ ℝ+ |
| 32 |
|
resmpt |
⊢ ( ( 2 [,) +∞ ) ⊆ ℝ+ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ) |
| 33 |
31 32
|
mp1i |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ) |
| 34 |
24 30 33
|
3eqtr4rd |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) = ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ∘f · ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ) ) |
| 35 |
31
|
a1i |
⊢ ( ⊤ → ( 2 [,) +∞ ) ⊆ ℝ+ ) |
| 36 |
|
chto1ub |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) |
| 37 |
36
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) ) |
| 38 |
35 37
|
o1res2 |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) ) |
| 39 |
|
chpchtlim |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ⇝𝑟 1 |
| 40 |
|
rlimo1 |
⊢ ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ⇝𝑟 1 → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 41 |
39 40
|
ax-mp |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ∈ 𝑂(1) |
| 42 |
|
o1mul |
⊢ ( ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) ∧ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) → ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ∘f · ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
| 43 |
38 41 42
|
sylancl |
⊢ ( ⊤ → ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ∘f · ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
| 44 |
34 43
|
eqeltrd |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) ∈ 𝑂(1) ) |
| 45 |
|
rerpdivcl |
⊢ ( ( ( ψ ‘ 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 46 |
18 45
|
mpancom |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 47 |
46
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℂ ) |
| 48 |
47
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℂ ) |
| 49 |
48
|
fmpttd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) : ℝ+ ⟶ ℂ ) |
| 50 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 51 |
50
|
a1i |
⊢ ( ⊤ → ℝ+ ⊆ ℝ ) |
| 52 |
1
|
a1i |
⊢ ( ⊤ → 2 ∈ ℝ ) |
| 53 |
49 51 52
|
o1resb |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) ∈ 𝑂(1) ) ) |
| 54 |
44 53
|
mpbird |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) ) |
| 55 |
54
|
mptru |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) |