| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 2 |
1
|
a1i |
⊢ ( ⊤ → ℝ+ ⊆ ℝ ) |
| 3 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
| 4 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 5 |
4
|
rpred |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 6 |
|
chpcl |
⊢ ( 𝑥 ∈ ℝ → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
| 7 |
5 6
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
| 8 |
7 4
|
rerpdivcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 9 |
|
chpo1ub |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) |
| 10 |
9
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) ) |
| 11 |
8 10
|
o1lo1d |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ ≤𝑂(1) ) |
| 12 |
|
chpcl |
⊢ ( 𝑦 ∈ ℝ → ( ψ ‘ 𝑦 ) ∈ ℝ ) |
| 13 |
12
|
ad2antrl |
⊢ ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → ( ψ ‘ 𝑦 ) ∈ ℝ ) |
| 14 |
13
|
rehalfcld |
⊢ ( ( ⊤ ∧ ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ) → ( ( ψ ‘ 𝑦 ) / 2 ) ∈ ℝ ) |
| 15 |
5
|
adantr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ∈ ℝ ) |
| 16 |
|
chpeq0 |
⊢ ( 𝑥 ∈ ℝ → ( ( ψ ‘ 𝑥 ) = 0 ↔ 𝑥 < 2 ) ) |
| 17 |
15 16
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( ( ψ ‘ 𝑥 ) = 0 ↔ 𝑥 < 2 ) ) |
| 18 |
17
|
biimpar |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 𝑥 < 2 ) → ( ψ ‘ 𝑥 ) = 0 ) |
| 19 |
18
|
oveq1d |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 𝑥 < 2 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) = ( 0 / 𝑥 ) ) |
| 20 |
4
|
adantr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ∈ ℝ+ ) |
| 21 |
20
|
rpcnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ∈ ℂ ) |
| 22 |
20
|
rpne0d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ≠ 0 ) |
| 23 |
21 22
|
div0d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 0 / 𝑥 ) = 0 ) |
| 24 |
13
|
ad2ant2r |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( ψ ‘ 𝑦 ) ∈ ℝ ) |
| 25 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 26 |
25
|
a1i |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 2 ∈ ℝ+ ) |
| 27 |
|
simprll |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑦 ∈ ℝ ) |
| 28 |
|
chpge0 |
⊢ ( 𝑦 ∈ ℝ → 0 ≤ ( ψ ‘ 𝑦 ) ) |
| 29 |
27 28
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 0 ≤ ( ψ ‘ 𝑦 ) ) |
| 30 |
24 26 29
|
divge0d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 0 ≤ ( ( ψ ‘ 𝑦 ) / 2 ) ) |
| 31 |
23 30
|
eqbrtrd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( 0 / 𝑥 ) ≤ ( ( ψ ‘ 𝑦 ) / 2 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 𝑥 < 2 ) → ( 0 / 𝑥 ) ≤ ( ( ψ ‘ 𝑦 ) / 2 ) ) |
| 33 |
19 32
|
eqbrtrd |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 𝑥 < 2 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( ( ψ ‘ 𝑦 ) / 2 ) ) |
| 34 |
7
|
ad2antrr |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 2 ≤ 𝑥 ) → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
| 35 |
24
|
adantr |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 2 ≤ 𝑥 ) → ( ψ ‘ 𝑦 ) ∈ ℝ ) |
| 36 |
25
|
a1i |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 2 ≤ 𝑥 ) → 2 ∈ ℝ+ ) |
| 37 |
15
|
adantr |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 2 ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
| 38 |
|
chpge0 |
⊢ ( 𝑥 ∈ ℝ → 0 ≤ ( ψ ‘ 𝑥 ) ) |
| 39 |
37 38
|
syl |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 2 ≤ 𝑥 ) → 0 ≤ ( ψ ‘ 𝑥 ) ) |
| 40 |
27
|
adantr |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 2 ≤ 𝑥 ) → 𝑦 ∈ ℝ ) |
| 41 |
|
simprr |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 < 𝑦 ) |
| 42 |
15 27 41
|
ltled |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 𝑥 ≤ 𝑦 ) |
| 43 |
42
|
adantr |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 2 ≤ 𝑥 ) → 𝑥 ≤ 𝑦 ) |
| 44 |
|
chpwordi |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 ≤ 𝑦 ) → ( ψ ‘ 𝑥 ) ≤ ( ψ ‘ 𝑦 ) ) |
| 45 |
37 40 43 44
|
syl3anc |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 2 ≤ 𝑥 ) → ( ψ ‘ 𝑥 ) ≤ ( ψ ‘ 𝑦 ) ) |
| 46 |
|
simpr |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 2 ≤ 𝑥 ) → 2 ≤ 𝑥 ) |
| 47 |
34 35 36 37 39 45 46
|
lediv12ad |
⊢ ( ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) ∧ 2 ≤ 𝑥 ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( ( ψ ‘ 𝑦 ) / 2 ) ) |
| 48 |
|
2re |
⊢ 2 ∈ ℝ |
| 49 |
48
|
a1i |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → 2 ∈ ℝ ) |
| 50 |
33 47 15 49
|
ltlecasei |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ ( ( 𝑦 ∈ ℝ ∧ 1 ≤ 𝑦 ) ∧ 𝑥 < 𝑦 ) ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ ( ( ψ ‘ 𝑦 ) / 2 ) ) |
| 51 |
2 3 8 11 14 50
|
lo1bddrp |
⊢ ( ⊤ → ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ 𝑐 ) |
| 52 |
51
|
mptru |
⊢ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ 𝑐 |
| 53 |
|
simpr |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 54 |
53
|
rpred |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 55 |
54 6
|
syl |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
| 56 |
|
simpl |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → 𝑐 ∈ ℝ+ ) |
| 57 |
56
|
rpred |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → 𝑐 ∈ ℝ ) |
| 58 |
55 57 53
|
ledivmul2d |
⊢ ( ( 𝑐 ∈ ℝ+ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ 𝑐 ↔ ( ψ ‘ 𝑥 ) ≤ ( 𝑐 · 𝑥 ) ) ) |
| 59 |
58
|
ralbidva |
⊢ ( 𝑐 ∈ ℝ+ → ( ∀ 𝑥 ∈ ℝ+ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ 𝑐 ↔ ∀ 𝑥 ∈ ℝ+ ( ψ ‘ 𝑥 ) ≤ ( 𝑐 · 𝑥 ) ) ) |
| 60 |
59
|
rexbiia |
⊢ ( ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ≤ 𝑐 ↔ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( ψ ‘ 𝑥 ) ≤ ( 𝑐 · 𝑥 ) ) |
| 61 |
52 60
|
mpbi |
⊢ ∃ 𝑐 ∈ ℝ+ ∀ 𝑥 ∈ ℝ+ ( ψ ‘ 𝑥 ) ≤ ( 𝑐 · 𝑥 ) |