| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpssre |
|
| 2 |
1
|
a1i |
|
| 3 |
|
1red |
|
| 4 |
|
simpr |
|
| 5 |
4
|
rpred |
|
| 6 |
|
chpcl |
|
| 7 |
5 6
|
syl |
|
| 8 |
7 4
|
rerpdivcld |
|
| 9 |
|
chpo1ub |
|
| 10 |
9
|
a1i |
|
| 11 |
8 10
|
o1lo1d |
|
| 12 |
|
chpcl |
|
| 13 |
12
|
ad2antrl |
|
| 14 |
13
|
rehalfcld |
|
| 15 |
5
|
adantr |
|
| 16 |
|
chpeq0 |
|
| 17 |
15 16
|
syl |
|
| 18 |
17
|
biimpar |
|
| 19 |
18
|
oveq1d |
|
| 20 |
4
|
adantr |
|
| 21 |
20
|
rpcnd |
|
| 22 |
20
|
rpne0d |
|
| 23 |
21 22
|
div0d |
|
| 24 |
13
|
ad2ant2r |
|
| 25 |
|
2rp |
|
| 26 |
25
|
a1i |
|
| 27 |
|
simprll |
|
| 28 |
|
chpge0 |
|
| 29 |
27 28
|
syl |
|
| 30 |
24 26 29
|
divge0d |
|
| 31 |
23 30
|
eqbrtrd |
|
| 32 |
31
|
adantr |
|
| 33 |
19 32
|
eqbrtrd |
|
| 34 |
7
|
ad2antrr |
|
| 35 |
24
|
adantr |
|
| 36 |
25
|
a1i |
|
| 37 |
15
|
adantr |
|
| 38 |
|
chpge0 |
|
| 39 |
37 38
|
syl |
|
| 40 |
27
|
adantr |
|
| 41 |
|
simprr |
|
| 42 |
15 27 41
|
ltled |
|
| 43 |
42
|
adantr |
|
| 44 |
|
chpwordi |
|
| 45 |
37 40 43 44
|
syl3anc |
|
| 46 |
|
simpr |
|
| 47 |
34 35 36 37 39 45 46
|
lediv12ad |
|
| 48 |
|
2re |
|
| 49 |
48
|
a1i |
|
| 50 |
33 47 15 49
|
ltlecasei |
|
| 51 |
2 3 8 11 14 50
|
lo1bddrp |
|
| 52 |
51
|
mptru |
|
| 53 |
|
simpr |
|
| 54 |
53
|
rpred |
|
| 55 |
54 6
|
syl |
|
| 56 |
|
simpl |
|
| 57 |
56
|
rpred |
|
| 58 |
55 57 53
|
ledivmul2d |
|
| 59 |
58
|
ralbidva |
|
| 60 |
59
|
rexbiia |
|
| 61 |
52 60
|
mpbi |
|