Metamath Proof Explorer


Theorem chpeq0

Description: The second Chebyshev function is zero iff its argument is less than 2 . (Contributed by Mario Carneiro, 9-Apr-2016)

Ref Expression
Assertion chpeq0 AψA=0A<2

Proof

Step Hyp Ref Expression
1 2re 2
2 lenlt 2A2A¬A<2
3 1 2 mpan A2A¬A<2
4 chprpcl A2AψA+
5 4 rpne0d A2AψA0
6 5 ex A2AψA0
7 3 6 sylbird A¬A<2ψA0
8 7 necon4bd AψA=0A<2
9 reflcl AA
10 9 adantr AA<2A
11 1red AA<21
12 2z 2
13 fllt A2A<2A<2
14 12 13 mpan2 AA<2A<2
15 14 biimpa AA<2A<2
16 df-2 2=1+1
17 15 16 breqtrdi AA<2A<1+1
18 flcl AA
19 18 adantr AA<2A
20 1z 1
21 zleltp1 A1A1A<1+1
22 19 20 21 sylancl AA<2A1A<1+1
23 17 22 mpbird AA<2A1
24 chpwordi A1A1ψAψ1
25 10 11 23 24 syl3anc AA<2ψAψ1
26 chpfl AψA=ψA
27 26 adantr AA<2ψA=ψA
28 chp1 ψ1=0
29 28 a1i AA<2ψ1=0
30 25 27 29 3brtr3d AA<2ψA0
31 chpge0 A0ψA
32 31 adantr AA<20ψA
33 chpcl AψA
34 33 adantr AA<2ψA
35 0re 0
36 letri3 ψA0ψA=0ψA00ψA
37 34 35 36 sylancl AA<2ψA=0ψA00ψA
38 30 32 37 mpbir2and AA<2ψA=0
39 38 ex AA<2ψA=0
40 8 39 impbid AψA=0A<2