Description: The second Chebyshev function is zero iff its argument is less than 2 . (Contributed by Mario Carneiro, 9-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | chpeq0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re | |
|
2 | lenlt | |
|
3 | 1 2 | mpan | |
4 | chprpcl | |
|
5 | 4 | rpne0d | |
6 | 5 | ex | |
7 | 3 6 | sylbird | |
8 | 7 | necon4bd | |
9 | reflcl | |
|
10 | 9 | adantr | |
11 | 1red | |
|
12 | 2z | |
|
13 | fllt | |
|
14 | 12 13 | mpan2 | |
15 | 14 | biimpa | |
16 | df-2 | |
|
17 | 15 16 | breqtrdi | |
18 | flcl | |
|
19 | 18 | adantr | |
20 | 1z | |
|
21 | zleltp1 | |
|
22 | 19 20 21 | sylancl | |
23 | 17 22 | mpbird | |
24 | chpwordi | |
|
25 | 10 11 23 24 | syl3anc | |
26 | chpfl | |
|
27 | 26 | adantr | |
28 | chp1 | |
|
29 | 28 | a1i | |
30 | 25 27 29 | 3brtr3d | |
31 | chpge0 | |
|
32 | 31 | adantr | |
33 | chpcl | |
|
34 | 33 | adantr | |
35 | 0re | |
|
36 | letri3 | |
|
37 | 34 35 36 | sylancl | |
38 | 30 32 37 | mpbir2and | |
39 | 38 | ex | |
40 | 8 39 | impbid | |