| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re |  |-  2 e. RR | 
						
							| 2 |  | lenlt |  |-  ( ( 2 e. RR /\ A e. RR ) -> ( 2 <_ A <-> -. A < 2 ) ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. RR -> ( 2 <_ A <-> -. A < 2 ) ) | 
						
							| 4 |  | chprpcl |  |-  ( ( A e. RR /\ 2 <_ A ) -> ( psi ` A ) e. RR+ ) | 
						
							| 5 | 4 | rpne0d |  |-  ( ( A e. RR /\ 2 <_ A ) -> ( psi ` A ) =/= 0 ) | 
						
							| 6 | 5 | ex |  |-  ( A e. RR -> ( 2 <_ A -> ( psi ` A ) =/= 0 ) ) | 
						
							| 7 | 3 6 | sylbird |  |-  ( A e. RR -> ( -. A < 2 -> ( psi ` A ) =/= 0 ) ) | 
						
							| 8 | 7 | necon4bd |  |-  ( A e. RR -> ( ( psi ` A ) = 0 -> A < 2 ) ) | 
						
							| 9 |  | reflcl |  |-  ( A e. RR -> ( |_ ` A ) e. RR ) | 
						
							| 10 | 9 | adantr |  |-  ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) e. RR ) | 
						
							| 11 |  | 1red |  |-  ( ( A e. RR /\ A < 2 ) -> 1 e. RR ) | 
						
							| 12 |  | 2z |  |-  2 e. ZZ | 
						
							| 13 |  | fllt |  |-  ( ( A e. RR /\ 2 e. ZZ ) -> ( A < 2 <-> ( |_ ` A ) < 2 ) ) | 
						
							| 14 | 12 13 | mpan2 |  |-  ( A e. RR -> ( A < 2 <-> ( |_ ` A ) < 2 ) ) | 
						
							| 15 | 14 | biimpa |  |-  ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) < 2 ) | 
						
							| 16 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 17 | 15 16 | breqtrdi |  |-  ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) < ( 1 + 1 ) ) | 
						
							| 18 |  | flcl |  |-  ( A e. RR -> ( |_ ` A ) e. ZZ ) | 
						
							| 19 | 18 | adantr |  |-  ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) e. ZZ ) | 
						
							| 20 |  | 1z |  |-  1 e. ZZ | 
						
							| 21 |  | zleltp1 |  |-  ( ( ( |_ ` A ) e. ZZ /\ 1 e. ZZ ) -> ( ( |_ ` A ) <_ 1 <-> ( |_ ` A ) < ( 1 + 1 ) ) ) | 
						
							| 22 | 19 20 21 | sylancl |  |-  ( ( A e. RR /\ A < 2 ) -> ( ( |_ ` A ) <_ 1 <-> ( |_ ` A ) < ( 1 + 1 ) ) ) | 
						
							| 23 | 17 22 | mpbird |  |-  ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) <_ 1 ) | 
						
							| 24 |  | chpwordi |  |-  ( ( ( |_ ` A ) e. RR /\ 1 e. RR /\ ( |_ ` A ) <_ 1 ) -> ( psi ` ( |_ ` A ) ) <_ ( psi ` 1 ) ) | 
						
							| 25 | 10 11 23 24 | syl3anc |  |-  ( ( A e. RR /\ A < 2 ) -> ( psi ` ( |_ ` A ) ) <_ ( psi ` 1 ) ) | 
						
							| 26 |  | chpfl |  |-  ( A e. RR -> ( psi ` ( |_ ` A ) ) = ( psi ` A ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( A e. RR /\ A < 2 ) -> ( psi ` ( |_ ` A ) ) = ( psi ` A ) ) | 
						
							| 28 |  | chp1 |  |-  ( psi ` 1 ) = 0 | 
						
							| 29 | 28 | a1i |  |-  ( ( A e. RR /\ A < 2 ) -> ( psi ` 1 ) = 0 ) | 
						
							| 30 | 25 27 29 | 3brtr3d |  |-  ( ( A e. RR /\ A < 2 ) -> ( psi ` A ) <_ 0 ) | 
						
							| 31 |  | chpge0 |  |-  ( A e. RR -> 0 <_ ( psi ` A ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( A e. RR /\ A < 2 ) -> 0 <_ ( psi ` A ) ) | 
						
							| 33 |  | chpcl |  |-  ( A e. RR -> ( psi ` A ) e. RR ) | 
						
							| 34 | 33 | adantr |  |-  ( ( A e. RR /\ A < 2 ) -> ( psi ` A ) e. RR ) | 
						
							| 35 |  | 0re |  |-  0 e. RR | 
						
							| 36 |  | letri3 |  |-  ( ( ( psi ` A ) e. RR /\ 0 e. RR ) -> ( ( psi ` A ) = 0 <-> ( ( psi ` A ) <_ 0 /\ 0 <_ ( psi ` A ) ) ) ) | 
						
							| 37 | 34 35 36 | sylancl |  |-  ( ( A e. RR /\ A < 2 ) -> ( ( psi ` A ) = 0 <-> ( ( psi ` A ) <_ 0 /\ 0 <_ ( psi ` A ) ) ) ) | 
						
							| 38 | 30 32 37 | mpbir2and |  |-  ( ( A e. RR /\ A < 2 ) -> ( psi ` A ) = 0 ) | 
						
							| 39 | 38 | ex |  |-  ( A e. RR -> ( A < 2 -> ( psi ` A ) = 0 ) ) | 
						
							| 40 | 8 39 | impbid |  |-  ( A e. RR -> ( ( psi ` A ) = 0 <-> A < 2 ) ) |