Metamath Proof Explorer


Definition df-chp

Description: Define the second Chebyshev function, which adds up the logarithms of the primes corresponding to the prime powers less than x , see definition in ApostolNT p. 75. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion df-chp ψ=xn=1xΛn

Detailed syntax breakdown

Step Hyp Ref Expression
0 cchp classψ
1 vx setvarx
2 cr class
3 vn setvarn
4 c1 class1
5 cfz class
6 cfl class.
7 1 cv setvarx
8 7 6 cfv classx
9 4 8 5 co class1x
10 cvma classΛ
11 3 cv setvarn
12 11 10 cfv classΛn
13 9 12 3 csu classn=1xΛn
14 1 2 13 cmpt classxn=1xΛn
15 0 14 wceq wffψ=xn=1xΛn