Metamath Proof Explorer


Theorem lo1bddrp

Description: Refine o1bdd2 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016)

Ref Expression
Hypotheses lo1bdd2.1 φA
lo1bdd2.2 φC
lo1bdd2.3 φxAB
lo1bdd2.4 φxAB𝑂1
lo1bdd2.5 φyCyM
lo1bdd2.6 φxAyCyx<yBM
Assertion lo1bddrp φm+xABm

Proof

Step Hyp Ref Expression
1 lo1bdd2.1 φA
2 lo1bdd2.2 φC
3 lo1bdd2.3 φxAB
4 lo1bdd2.4 φxAB𝑂1
5 lo1bdd2.5 φyCyM
6 lo1bdd2.6 φxAyCyx<yBM
7 1 2 3 4 5 6 lo1bdd2 φnxABn
8 simpr φnn
9 8 recnd φnn
10 9 abscld φnn
11 9 absge0d φn0n
12 10 11 ge0p1rpd φnn+1+
13 simplr φnxAn
14 10 adantr φnxAn
15 peano2re nn+1
16 14 15 syl φnxAn+1
17 13 leabsd φnxAnn
18 14 lep1d φnxAnn+1
19 13 14 16 17 18 letrd φnxAnn+1
20 3 adantlr φnxAB
21 letr Bnn+1Bnnn+1Bn+1
22 20 13 16 21 syl3anc φnxABnnn+1Bn+1
23 19 22 mpan2d φnxABnBn+1
24 23 ralimdva φnxABnxABn+1
25 brralrspcev n+1+xABn+1m+xABm
26 12 24 25 syl6an φnxABnm+xABm
27 26 rexlimdva φnxABnm+xABm
28 7 27 mpd φm+xABm