Description: Refine o1bdd2 to give a strictly positive upper bound. (Contributed by Mario Carneiro, 25-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lo1bdd2.1 | |
|
lo1bdd2.2 | |
||
lo1bdd2.3 | |
||
lo1bdd2.4 | |
||
lo1bdd2.5 | |
||
lo1bdd2.6 | |
||
Assertion | lo1bddrp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lo1bdd2.1 | |
|
2 | lo1bdd2.2 | |
|
3 | lo1bdd2.3 | |
|
4 | lo1bdd2.4 | |
|
5 | lo1bdd2.5 | |
|
6 | lo1bdd2.6 | |
|
7 | 1 2 3 4 5 6 | lo1bdd2 | |
8 | simpr | |
|
9 | 8 | recnd | |
10 | 9 | abscld | |
11 | 9 | absge0d | |
12 | 10 11 | ge0p1rpd | |
13 | simplr | |
|
14 | 10 | adantr | |
15 | peano2re | |
|
16 | 14 15 | syl | |
17 | 13 | leabsd | |
18 | 14 | lep1d | |
19 | 13 14 16 17 18 | letrd | |
20 | 3 | adantlr | |
21 | letr | |
|
22 | 20 13 16 21 | syl3anc | |
23 | 19 22 | mpan2d | |
24 | 23 | ralimdva | |
25 | brralrspcev | |
|
26 | 12 24 25 | syl6an | |
27 | 26 | rexlimdva | |
28 | 7 27 | mpd | |