Metamath Proof Explorer


Theorem o1bdd2

Description: If an eventually bounded function is bounded on every interval A i^i ( -oo , y ) by a function M ( y ) , then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016) (Proof shortened by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1bdd2.1 φA
o1bdd2.2 φC
o1bdd2.3 φxAB
o1bdd2.4 φxAB𝑂1
o1bdd2.5 φyCyM
o1bdd2.6 φxAyCyx<yBM
Assertion o1bdd2 φmxABm

Proof

Step Hyp Ref Expression
1 o1bdd2.1 φA
2 o1bdd2.2 φC
3 o1bdd2.3 φxAB
4 o1bdd2.4 φxAB𝑂1
5 o1bdd2.5 φyCyM
6 o1bdd2.6 φxAyCyx<yBM
7 3 abscld φxAB
8 3 lo1o12 φxAB𝑂1xAB𝑂1
9 4 8 mpbid φxAB𝑂1
10 1 2 7 9 5 6 lo1bdd2 φmxABm