Description: If an eventually bounded function is bounded on every interval A i^i ( -oo , y ) by a function M ( y ) , then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lo1bdd2.1 | |
|
lo1bdd2.2 | |
||
lo1bdd2.3 | |
||
lo1bdd2.4 | |
||
lo1bdd2.5 | |
||
lo1bdd2.6 | |
||
Assertion | lo1bdd2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lo1bdd2.1 | |
|
2 | lo1bdd2.2 | |
|
3 | lo1bdd2.3 | |
|
4 | lo1bdd2.4 | |
|
5 | lo1bdd2.5 | |
|
6 | lo1bdd2.6 | |
|
7 | 1 3 2 | ello1mpt2 | |
8 | 4 7 | mpbid | |
9 | elicopnf | |
|
10 | 2 9 | syl | |
11 | 10 | biimpa | |
12 | 11 5 | syldan | |
13 | 12 | ad2antrr | |
14 | simplrl | |
|
15 | 13 14 | ifclda | |
16 | 1 | ad2antrr | |
17 | 16 | sselda | |
18 | 11 | simpld | |
19 | 18 | ad2antrr | |
20 | 17 19 | ltnled | |
21 | 6 | expr | |
22 | 21 | an32s | |
23 | 11 22 | syldanl | |
24 | 23 | adantlr | |
25 | simplr | |
|
26 | 12 | ad2antrr | |
27 | max2 | |
|
28 | 25 26 27 | syl2anc | |
29 | 3 | ad4ant14 | |
30 | 12 | ad5ant12 | |
31 | simpllr | |
|
32 | 30 31 | ifclda | |
33 | letr | |
|
34 | 29 26 32 33 | syl3anc | |
35 | 28 34 | mpan2d | |
36 | 24 35 | syld | |
37 | 20 36 | sylbird | |
38 | max1 | |
|
39 | 25 26 38 | syl2anc | |
40 | letr | |
|
41 | 29 25 32 40 | syl3anc | |
42 | 39 41 | mpan2d | |
43 | 37 42 | jad | |
44 | 43 | ralimdva | |
45 | 44 | impr | |
46 | brralrspcev | |
|
47 | 15 45 46 | syl2anc | |
48 | 47 | expr | |
49 | 48 | rexlimdva | |
50 | 49 | rexlimdva | |
51 | 8 50 | mpd | |