Metamath Proof Explorer


Theorem lo1bdd2

Description: If an eventually bounded function is bounded on every interval A i^i ( -oo , y ) by a function M ( y ) , then the function is bounded on the whole domain. (Contributed by Mario Carneiro, 9-Apr-2016)

Ref Expression
Hypotheses lo1bdd2.1 φA
lo1bdd2.2 φC
lo1bdd2.3 φxAB
lo1bdd2.4 φxAB𝑂1
lo1bdd2.5 φyCyM
lo1bdd2.6 φxAyCyx<yBM
Assertion lo1bdd2 φmxABm

Proof

Step Hyp Ref Expression
1 lo1bdd2.1 φA
2 lo1bdd2.2 φC
3 lo1bdd2.3 φxAB
4 lo1bdd2.4 φxAB𝑂1
5 lo1bdd2.5 φyCyM
6 lo1bdd2.6 φxAyCyx<yBM
7 1 3 2 ello1mpt2 φxAB𝑂1yC+∞nxAyxBn
8 4 7 mpbid φyC+∞nxAyxBn
9 elicopnf CyC+∞yCy
10 2 9 syl φyC+∞yCy
11 10 biimpa φyC+∞yCy
12 11 5 syldan φyC+∞M
13 12 ad2antrr φyC+∞nxAyxBnnMM
14 simplrl φyC+∞nxAyxBn¬nMn
15 13 14 ifclda φyC+∞nxAyxBnifnMMn
16 1 ad2antrr φyC+∞nA
17 16 sselda φyC+∞nxAx
18 11 simpld φyC+∞y
19 18 ad2antrr φyC+∞nxAy
20 17 19 ltnled φyC+∞nxAx<y¬yx
21 6 expr φxAyCyx<yBM
22 21 an32s φyCyxAx<yBM
23 11 22 syldanl φyC+∞xAx<yBM
24 23 adantlr φyC+∞nxAx<yBM
25 simplr φyC+∞nxAn
26 12 ad2antrr φyC+∞nxAM
27 max2 nMMifnMMn
28 25 26 27 syl2anc φyC+∞nxAMifnMMn
29 3 ad4ant14 φyC+∞nxAB
30 12 ad5ant12 φyC+∞nxAnMM
31 simpllr φyC+∞nxA¬nMn
32 30 31 ifclda φyC+∞nxAifnMMn
33 letr BMifnMMnBMMifnMMnBifnMMn
34 29 26 32 33 syl3anc φyC+∞nxABMMifnMMnBifnMMn
35 28 34 mpan2d φyC+∞nxABMBifnMMn
36 24 35 syld φyC+∞nxAx<yBifnMMn
37 20 36 sylbird φyC+∞nxA¬yxBifnMMn
38 max1 nMnifnMMn
39 25 26 38 syl2anc φyC+∞nxAnifnMMn
40 letr BnifnMMnBnnifnMMnBifnMMn
41 29 25 32 40 syl3anc φyC+∞nxABnnifnMMnBifnMMn
42 39 41 mpan2d φyC+∞nxABnBifnMMn
43 37 42 jad φyC+∞nxAyxBnBifnMMn
44 43 ralimdva φyC+∞nxAyxBnxABifnMMn
45 44 impr φyC+∞nxAyxBnxABifnMMn
46 brralrspcev ifnMMnxABifnMMnmxABm
47 15 45 46 syl2anc φyC+∞nxAyxBnmxABm
48 47 expr φyC+∞nxAyxBnmxABm
49 48 rexlimdva φyC+∞nxAyxBnmxABm
50 49 rexlimdva φyC+∞nxAyxBnmxABm
51 8 50 mpd φmxABm