Metamath Proof Explorer


Theorem elo1

Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion elo1 F𝑂1F𝑝𝑚xmydomFx+∞Fym

Proof

Step Hyp Ref Expression
1 dmeq f=Fdomf=domF
2 1 ineq1d f=Fdomfx+∞=domFx+∞
3 fveq1 f=Ffy=Fy
4 3 fveq2d f=Ffy=Fy
5 4 breq1d f=FfymFym
6 2 5 raleqbidv f=Fydomfx+∞fymydomFx+∞Fym
7 6 2rexbidv f=Fxmydomfx+∞fymxmydomFx+∞Fym
8 df-o1 𝑂1=f𝑝𝑚|xmydomfx+∞fym
9 7 8 elrab2 F𝑂1F𝑝𝑚xmydomFx+∞Fym