Metamath Proof Explorer


Theorem elo12

Description: Elementhood in the set of eventually bounded functions. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion elo12 F:AAF𝑂1xmyAxyFym

Proof

Step Hyp Ref Expression
1 cnex V
2 reex V
3 elpm2r VVF:AAF𝑝𝑚
4 1 2 3 mpanl12 F:AAF𝑝𝑚
5 elo1 F𝑂1F𝑝𝑚xmydomFx+∞Fym
6 5 baib F𝑝𝑚F𝑂1xmydomFx+∞Fym
7 4 6 syl F:AAF𝑂1xmydomFx+∞Fym
8 elin ydomFx+∞ydomFyx+∞
9 fdm F:AdomF=A
10 9 ad3antrrr F:AAxmdomF=A
11 10 eleq2d F:AAxmydomFyA
12 11 anbi1d F:AAxmydomFyx+∞yAyx+∞
13 simpllr F:AAxmA
14 13 sselda F:AAxmyAy
15 simpllr F:AAxmyAx
16 elicopnf xyx+∞yxy
17 15 16 syl F:AAxmyAyx+∞yxy
18 14 17 mpbirand F:AAxmyAyx+∞xy
19 18 pm5.32da F:AAxmyAyx+∞yAxy
20 12 19 bitrd F:AAxmydomFyx+∞yAxy
21 8 20 bitrid F:AAxmydomFx+∞yAxy
22 21 imbi1d F:AAxmydomFx+∞FymyAxyFym
23 impexp yAxyFymyAxyFym
24 22 23 bitrdi F:AAxmydomFx+∞FymyAxyFym
25 24 ralbidv2 F:AAxmydomFx+∞FymyAxyFym
26 25 rexbidva F:AAxmydomFx+∞FymmyAxyFym
27 26 rexbidva F:AAxmydomFx+∞FymxmyAxyFym
28 7 27 bitrd F:AAF𝑂1xmyAxyFym