| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmeq |
⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) |
| 2 |
1
|
ineq1d |
⊢ ( 𝑓 = 𝐹 → ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) = ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ) |
| 3 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 4 |
3
|
fveq2d |
⊢ ( 𝑓 = 𝐹 → ( abs ‘ ( 𝑓 ‘ 𝑦 ) ) = ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ) |
| 5 |
4
|
breq1d |
⊢ ( 𝑓 = 𝐹 → ( ( abs ‘ ( 𝑓 ‘ 𝑦 ) ) ≤ 𝑚 ↔ ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) |
| 6 |
2 5
|
raleqbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝑓 ‘ 𝑦 ) ) ≤ 𝑚 ↔ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) |
| 7 |
6
|
2rexbidv |
⊢ ( 𝑓 = 𝐹 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝑓 ‘ 𝑦 ) ) ≤ 𝑚 ↔ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) |
| 8 |
|
df-o1 |
⊢ 𝑂(1) = { 𝑓 ∈ ( ℂ ↑pm ℝ ) ∣ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝑓 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝑓 ‘ 𝑦 ) ) ≤ 𝑚 } |
| 9 |
7 8
|
elrab2 |
⊢ ( 𝐹 ∈ 𝑂(1) ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑚 ∈ ℝ ∀ 𝑦 ∈ ( dom 𝐹 ∩ ( 𝑥 [,) +∞ ) ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑚 ) ) |