| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpssre |
|- RR+ C_ RR |
| 2 |
1
|
a1i |
|- ( T. -> RR+ C_ RR ) |
| 3 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 4 |
|
chtcl |
|- ( x e. RR -> ( theta ` x ) e. RR ) |
| 5 |
3 4
|
syl |
|- ( x e. RR+ -> ( theta ` x ) e. RR ) |
| 6 |
|
rerpdivcl |
|- ( ( ( theta ` x ) e. RR /\ x e. RR+ ) -> ( ( theta ` x ) / x ) e. RR ) |
| 7 |
5 6
|
mpancom |
|- ( x e. RR+ -> ( ( theta ` x ) / x ) e. RR ) |
| 8 |
7
|
recnd |
|- ( x e. RR+ -> ( ( theta ` x ) / x ) e. CC ) |
| 9 |
8
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( ( theta ` x ) / x ) e. CC ) |
| 10 |
|
3re |
|- 3 e. RR |
| 11 |
10
|
a1i |
|- ( T. -> 3 e. RR ) |
| 12 |
|
2rp |
|- 2 e. RR+ |
| 13 |
|
relogcl |
|- ( 2 e. RR+ -> ( log ` 2 ) e. RR ) |
| 14 |
12 13
|
ax-mp |
|- ( log ` 2 ) e. RR |
| 15 |
|
2re |
|- 2 e. RR |
| 16 |
14 15
|
remulcli |
|- ( ( log ` 2 ) x. 2 ) e. RR |
| 17 |
16
|
a1i |
|- ( T. -> ( ( log ` 2 ) x. 2 ) e. RR ) |
| 18 |
|
chtge0 |
|- ( x e. RR -> 0 <_ ( theta ` x ) ) |
| 19 |
3 18
|
syl |
|- ( x e. RR+ -> 0 <_ ( theta ` x ) ) |
| 20 |
|
rpregt0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) |
| 21 |
|
divge0 |
|- ( ( ( ( theta ` x ) e. RR /\ 0 <_ ( theta ` x ) ) /\ ( x e. RR /\ 0 < x ) ) -> 0 <_ ( ( theta ` x ) / x ) ) |
| 22 |
5 19 20 21
|
syl21anc |
|- ( x e. RR+ -> 0 <_ ( ( theta ` x ) / x ) ) |
| 23 |
7 22
|
absidd |
|- ( x e. RR+ -> ( abs ` ( ( theta ` x ) / x ) ) = ( ( theta ` x ) / x ) ) |
| 24 |
23
|
adantr |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( abs ` ( ( theta ` x ) / x ) ) = ( ( theta ` x ) / x ) ) |
| 25 |
7
|
adantr |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( ( theta ` x ) / x ) e. RR ) |
| 26 |
16
|
a1i |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( ( log ` 2 ) x. 2 ) e. RR ) |
| 27 |
5
|
adantr |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( theta ` x ) e. RR ) |
| 28 |
3
|
adantr |
|- ( ( x e. RR+ /\ 3 <_ x ) -> x e. RR ) |
| 29 |
|
remulcl |
|- ( ( 2 e. RR /\ x e. RR ) -> ( 2 x. x ) e. RR ) |
| 30 |
15 28 29
|
sylancr |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( 2 x. x ) e. RR ) |
| 31 |
|
resubcl |
|- ( ( ( 2 x. x ) e. RR /\ 3 e. RR ) -> ( ( 2 x. x ) - 3 ) e. RR ) |
| 32 |
30 10 31
|
sylancl |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( ( 2 x. x ) - 3 ) e. RR ) |
| 33 |
|
remulcl |
|- ( ( ( log ` 2 ) e. RR /\ ( ( 2 x. x ) - 3 ) e. RR ) -> ( ( log ` 2 ) x. ( ( 2 x. x ) - 3 ) ) e. RR ) |
| 34 |
14 32 33
|
sylancr |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( ( log ` 2 ) x. ( ( 2 x. x ) - 3 ) ) e. RR ) |
| 35 |
|
remulcl |
|- ( ( ( log ` 2 ) e. RR /\ ( 2 x. x ) e. RR ) -> ( ( log ` 2 ) x. ( 2 x. x ) ) e. RR ) |
| 36 |
14 30 35
|
sylancr |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( ( log ` 2 ) x. ( 2 x. x ) ) e. RR ) |
| 37 |
15
|
a1i |
|- ( ( x e. RR+ /\ 3 <_ x ) -> 2 e. RR ) |
| 38 |
10
|
a1i |
|- ( ( x e. RR+ /\ 3 <_ x ) -> 3 e. RR ) |
| 39 |
|
2lt3 |
|- 2 < 3 |
| 40 |
39
|
a1i |
|- ( ( x e. RR+ /\ 3 <_ x ) -> 2 < 3 ) |
| 41 |
|
simpr |
|- ( ( x e. RR+ /\ 3 <_ x ) -> 3 <_ x ) |
| 42 |
37 38 28 40 41
|
ltletrd |
|- ( ( x e. RR+ /\ 3 <_ x ) -> 2 < x ) |
| 43 |
|
chtub |
|- ( ( x e. RR /\ 2 < x ) -> ( theta ` x ) < ( ( log ` 2 ) x. ( ( 2 x. x ) - 3 ) ) ) |
| 44 |
28 42 43
|
syl2anc |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( theta ` x ) < ( ( log ` 2 ) x. ( ( 2 x. x ) - 3 ) ) ) |
| 45 |
|
3rp |
|- 3 e. RR+ |
| 46 |
|
ltsubrp |
|- ( ( ( 2 x. x ) e. RR /\ 3 e. RR+ ) -> ( ( 2 x. x ) - 3 ) < ( 2 x. x ) ) |
| 47 |
30 45 46
|
sylancl |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( ( 2 x. x ) - 3 ) < ( 2 x. x ) ) |
| 48 |
|
1lt2 |
|- 1 < 2 |
| 49 |
|
rplogcl |
|- ( ( 2 e. RR /\ 1 < 2 ) -> ( log ` 2 ) e. RR+ ) |
| 50 |
15 48 49
|
mp2an |
|- ( log ` 2 ) e. RR+ |
| 51 |
|
elrp |
|- ( ( log ` 2 ) e. RR+ <-> ( ( log ` 2 ) e. RR /\ 0 < ( log ` 2 ) ) ) |
| 52 |
50 51
|
mpbi |
|- ( ( log ` 2 ) e. RR /\ 0 < ( log ` 2 ) ) |
| 53 |
52
|
a1i |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( ( log ` 2 ) e. RR /\ 0 < ( log ` 2 ) ) ) |
| 54 |
|
ltmul2 |
|- ( ( ( ( 2 x. x ) - 3 ) e. RR /\ ( 2 x. x ) e. RR /\ ( ( log ` 2 ) e. RR /\ 0 < ( log ` 2 ) ) ) -> ( ( ( 2 x. x ) - 3 ) < ( 2 x. x ) <-> ( ( log ` 2 ) x. ( ( 2 x. x ) - 3 ) ) < ( ( log ` 2 ) x. ( 2 x. x ) ) ) ) |
| 55 |
32 30 53 54
|
syl3anc |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( ( ( 2 x. x ) - 3 ) < ( 2 x. x ) <-> ( ( log ` 2 ) x. ( ( 2 x. x ) - 3 ) ) < ( ( log ` 2 ) x. ( 2 x. x ) ) ) ) |
| 56 |
47 55
|
mpbid |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( ( log ` 2 ) x. ( ( 2 x. x ) - 3 ) ) < ( ( log ` 2 ) x. ( 2 x. x ) ) ) |
| 57 |
27 34 36 44 56
|
lttrd |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( theta ` x ) < ( ( log ` 2 ) x. ( 2 x. x ) ) ) |
| 58 |
14
|
recni |
|- ( log ` 2 ) e. CC |
| 59 |
58
|
a1i |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( log ` 2 ) e. CC ) |
| 60 |
|
2cnd |
|- ( ( x e. RR+ /\ 3 <_ x ) -> 2 e. CC ) |
| 61 |
3
|
recnd |
|- ( x e. RR+ -> x e. CC ) |
| 62 |
61
|
adantr |
|- ( ( x e. RR+ /\ 3 <_ x ) -> x e. CC ) |
| 63 |
59 60 62
|
mulassd |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( ( ( log ` 2 ) x. 2 ) x. x ) = ( ( log ` 2 ) x. ( 2 x. x ) ) ) |
| 64 |
57 63
|
breqtrrd |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( theta ` x ) < ( ( ( log ` 2 ) x. 2 ) x. x ) ) |
| 65 |
20
|
adantr |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( x e. RR /\ 0 < x ) ) |
| 66 |
|
ltdivmul2 |
|- ( ( ( theta ` x ) e. RR /\ ( ( log ` 2 ) x. 2 ) e. RR /\ ( x e. RR /\ 0 < x ) ) -> ( ( ( theta ` x ) / x ) < ( ( log ` 2 ) x. 2 ) <-> ( theta ` x ) < ( ( ( log ` 2 ) x. 2 ) x. x ) ) ) |
| 67 |
27 26 65 66
|
syl3anc |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( ( ( theta ` x ) / x ) < ( ( log ` 2 ) x. 2 ) <-> ( theta ` x ) < ( ( ( log ` 2 ) x. 2 ) x. x ) ) ) |
| 68 |
64 67
|
mpbird |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( ( theta ` x ) / x ) < ( ( log ` 2 ) x. 2 ) ) |
| 69 |
25 26 68
|
ltled |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( ( theta ` x ) / x ) <_ ( ( log ` 2 ) x. 2 ) ) |
| 70 |
24 69
|
eqbrtrd |
|- ( ( x e. RR+ /\ 3 <_ x ) -> ( abs ` ( ( theta ` x ) / x ) ) <_ ( ( log ` 2 ) x. 2 ) ) |
| 71 |
70
|
adantl |
|- ( ( T. /\ ( x e. RR+ /\ 3 <_ x ) ) -> ( abs ` ( ( theta ` x ) / x ) ) <_ ( ( log ` 2 ) x. 2 ) ) |
| 72 |
2 9 11 17 71
|
elo1d |
|- ( T. -> ( x e. RR+ |-> ( ( theta ` x ) / x ) ) e. O(1) ) |
| 73 |
72
|
mptru |
|- ( x e. RR+ |-> ( ( theta ` x ) / x ) ) e. O(1) |