| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovexd |
|- ( T. -> ( 2 [,) +oo ) e. _V ) |
| 2 |
|
ovexd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / x ) e. _V ) |
| 3 |
|
ovexd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) e. _V ) |
| 4 |
|
eqidd |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) ) |
| 5 |
|
simpr |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> x e. ( 2 [,) +oo ) ) |
| 6 |
|
2re |
|- 2 e. RR |
| 7 |
|
elicopnf |
|- ( 2 e. RR -> ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) ) |
| 8 |
6 7
|
ax-mp |
|- ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) |
| 9 |
5 8
|
sylib |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( x e. RR /\ 2 <_ x ) ) |
| 10 |
|
chtrpcl |
|- ( ( x e. RR /\ 2 <_ x ) -> ( theta ` x ) e. RR+ ) |
| 11 |
9 10
|
syl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( theta ` x ) e. RR+ ) |
| 12 |
11
|
rpcnne0d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) ) |
| 13 |
|
ppinncl |
|- ( ( x e. RR /\ 2 <_ x ) -> ( ppi ` x ) e. NN ) |
| 14 |
9 13
|
syl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ppi ` x ) e. NN ) |
| 15 |
14
|
nnrpd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ppi ` x ) e. RR+ ) |
| 16 |
9
|
simpld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> x e. RR ) |
| 17 |
|
1red |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 1 e. RR ) |
| 18 |
6
|
a1i |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 2 e. RR ) |
| 19 |
|
1lt2 |
|- 1 < 2 |
| 20 |
19
|
a1i |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 1 < 2 ) |
| 21 |
9
|
simprd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 2 <_ x ) |
| 22 |
17 18 16 20 21
|
ltletrd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 1 < x ) |
| 23 |
16 22
|
rplogcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( log ` x ) e. RR+ ) |
| 24 |
15 23
|
rpmulcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ppi ` x ) x. ( log ` x ) ) e. RR+ ) |
| 25 |
24
|
rpcnne0d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( ppi ` x ) x. ( log ` x ) ) e. CC /\ ( ( ppi ` x ) x. ( log ` x ) ) =/= 0 ) ) |
| 26 |
|
recdiv |
|- ( ( ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) /\ ( ( ( ppi ` x ) x. ( log ` x ) ) e. CC /\ ( ( ppi ` x ) x. ( log ` x ) ) =/= 0 ) ) -> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) = ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) |
| 27 |
12 25 26
|
syl2anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) = ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) |
| 28 |
27
|
mpteq2dva |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
| 29 |
1 2 3 4 28
|
offval2 |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( theta ` x ) / x ) x. ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) ) |
| 30 |
|
0red |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 0 e. RR ) |
| 31 |
|
2pos |
|- 0 < 2 |
| 32 |
31
|
a1i |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 0 < 2 ) |
| 33 |
30 18 16 32 21
|
ltletrd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 0 < x ) |
| 34 |
16 33
|
elrpd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> x e. RR+ ) |
| 35 |
34
|
rpcnne0d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( x e. CC /\ x =/= 0 ) ) |
| 36 |
24
|
rpcnd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ppi ` x ) x. ( log ` x ) ) e. CC ) |
| 37 |
|
dmdcan |
|- ( ( ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) /\ ( x e. CC /\ x =/= 0 ) /\ ( ( ppi ` x ) x. ( log ` x ) ) e. CC ) -> ( ( ( theta ` x ) / x ) x. ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) = ( ( ( ppi ` x ) x. ( log ` x ) ) / x ) ) |
| 38 |
12 35 36 37
|
syl3anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( theta ` x ) / x ) x. ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) = ( ( ( ppi ` x ) x. ( log ` x ) ) / x ) ) |
| 39 |
15
|
rpcnd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ppi ` x ) e. CC ) |
| 40 |
23
|
rpcnne0d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( log ` x ) e. CC /\ ( log ` x ) =/= 0 ) ) |
| 41 |
|
divdiv2 |
|- ( ( ( ppi ` x ) e. CC /\ ( x e. CC /\ x =/= 0 ) /\ ( ( log ` x ) e. CC /\ ( log ` x ) =/= 0 ) ) -> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) = ( ( ( ppi ` x ) x. ( log ` x ) ) / x ) ) |
| 42 |
39 35 40 41
|
syl3anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) = ( ( ( ppi ` x ) x. ( log ` x ) ) / x ) ) |
| 43 |
38 42
|
eqtr4d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( theta ` x ) / x ) x. ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) = ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) |
| 44 |
43
|
mpteq2dva |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( ( theta ` x ) / x ) x. ( ( ( ppi ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) ) |
| 45 |
29 44
|
eqtrd |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) ) |
| 46 |
34
|
ex |
|- ( T. -> ( x e. ( 2 [,) +oo ) -> x e. RR+ ) ) |
| 47 |
46
|
ssrdv |
|- ( T. -> ( 2 [,) +oo ) C_ RR+ ) |
| 48 |
|
chto1ub |
|- ( x e. RR+ |-> ( ( theta ` x ) / x ) ) e. O(1) |
| 49 |
48
|
a1i |
|- ( T. -> ( x e. RR+ |-> ( ( theta ` x ) / x ) ) e. O(1) ) |
| 50 |
47 49
|
o1res2 |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) e. O(1) ) |
| 51 |
|
ax-1cn |
|- 1 e. CC |
| 52 |
51
|
a1i |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 1 e. CC ) |
| 53 |
11 24
|
rpdivcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) e. RR+ ) |
| 54 |
53
|
rpcnd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) e. CC ) |
| 55 |
|
pnfxr |
|- +oo e. RR* |
| 56 |
|
icossre |
|- ( ( 2 e. RR /\ +oo e. RR* ) -> ( 2 [,) +oo ) C_ RR ) |
| 57 |
6 55 56
|
mp2an |
|- ( 2 [,) +oo ) C_ RR |
| 58 |
|
rlimconst |
|- ( ( ( 2 [,) +oo ) C_ RR /\ 1 e. CC ) -> ( x e. ( 2 [,) +oo ) |-> 1 ) ~~>r 1 ) |
| 59 |
57 51 58
|
mp2an |
|- ( x e. ( 2 [,) +oo ) |-> 1 ) ~~>r 1 |
| 60 |
59
|
a1i |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> 1 ) ~~>r 1 ) |
| 61 |
|
chtppilim |
|- ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ~~>r 1 |
| 62 |
61
|
a1i |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ~~>r 1 ) |
| 63 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 64 |
63
|
a1i |
|- ( T. -> 1 =/= 0 ) |
| 65 |
53
|
rpne0d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) =/= 0 ) |
| 66 |
52 54 60 62 64 65
|
rlimdiv |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ~~>r ( 1 / 1 ) ) |
| 67 |
|
rlimo1 |
|- ( ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ~~>r ( 1 / 1 ) -> ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) e. O(1) ) |
| 68 |
66 67
|
syl |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) e. O(1) ) |
| 69 |
|
o1mul |
|- ( ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) e. O(1) /\ ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) e. O(1) ) -> ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ) e. O(1) ) |
| 70 |
50 68 69
|
syl2anc |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( 1 / ( ( theta ` x ) / ( ( ppi ` x ) x. ( log ` x ) ) ) ) ) ) e. O(1) ) |
| 71 |
45 70
|
eqeltrrd |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) e. O(1) ) |
| 72 |
71
|
mptru |
|- ( x e. ( 2 [,) +oo ) |-> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) e. O(1) |