| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovexd |
|
| 2 |
|
ovexd |
|
| 3 |
|
ovexd |
|
| 4 |
|
eqidd |
|
| 5 |
|
simpr |
|
| 6 |
|
2re |
|
| 7 |
|
elicopnf |
|
| 8 |
6 7
|
ax-mp |
|
| 9 |
5 8
|
sylib |
|
| 10 |
|
chtrpcl |
|
| 11 |
9 10
|
syl |
|
| 12 |
11
|
rpcnne0d |
|
| 13 |
|
ppinncl |
|
| 14 |
9 13
|
syl |
|
| 15 |
14
|
nnrpd |
|
| 16 |
9
|
simpld |
|
| 17 |
|
1red |
|
| 18 |
6
|
a1i |
|
| 19 |
|
1lt2 |
|
| 20 |
19
|
a1i |
|
| 21 |
9
|
simprd |
|
| 22 |
17 18 16 20 21
|
ltletrd |
|
| 23 |
16 22
|
rplogcld |
|
| 24 |
15 23
|
rpmulcld |
|
| 25 |
24
|
rpcnne0d |
|
| 26 |
|
recdiv |
|
| 27 |
12 25 26
|
syl2anc |
|
| 28 |
27
|
mpteq2dva |
|
| 29 |
1 2 3 4 28
|
offval2 |
|
| 30 |
|
0red |
|
| 31 |
|
2pos |
|
| 32 |
31
|
a1i |
|
| 33 |
30 18 16 32 21
|
ltletrd |
|
| 34 |
16 33
|
elrpd |
|
| 35 |
34
|
rpcnne0d |
|
| 36 |
24
|
rpcnd |
|
| 37 |
|
dmdcan |
|
| 38 |
12 35 36 37
|
syl3anc |
|
| 39 |
15
|
rpcnd |
|
| 40 |
23
|
rpcnne0d |
|
| 41 |
|
divdiv2 |
|
| 42 |
39 35 40 41
|
syl3anc |
|
| 43 |
38 42
|
eqtr4d |
|
| 44 |
43
|
mpteq2dva |
|
| 45 |
29 44
|
eqtrd |
|
| 46 |
34
|
ex |
|
| 47 |
46
|
ssrdv |
|
| 48 |
|
chto1ub |
|
| 49 |
48
|
a1i |
|
| 50 |
47 49
|
o1res2 |
|
| 51 |
|
ax-1cn |
|
| 52 |
51
|
a1i |
|
| 53 |
11 24
|
rpdivcld |
|
| 54 |
53
|
rpcnd |
|
| 55 |
|
pnfxr |
|
| 56 |
|
icossre |
|
| 57 |
6 55 56
|
mp2an |
|
| 58 |
|
rlimconst |
|
| 59 |
57 51 58
|
mp2an |
|
| 60 |
59
|
a1i |
|
| 61 |
|
chtppilim |
|
| 62 |
61
|
a1i |
|
| 63 |
|
ax-1ne0 |
|
| 64 |
63
|
a1i |
|
| 65 |
53
|
rpne0d |
|
| 66 |
52 54 60 62 64 65
|
rlimdiv |
|
| 67 |
|
rlimo1 |
|
| 68 |
66 67
|
syl |
|
| 69 |
|
o1mul |
|
| 70 |
50 68 69
|
syl2anc |
|
| 71 |
45 70
|
eqeltrrd |
|
| 72 |
71
|
mptru |
|