Metamath Proof Explorer


Theorem chebbnd2

Description: The Chebyshev bound, part 2: The function ppi ( x ) is eventually upper bounded by a positive constant times x / log ( x ) . Alternatively stated, the function ppi ( x ) / ( x / log ( x ) ) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chebbnd2 x 2 +∞ π _ x x log x 𝑂1

Proof

Step Hyp Ref Expression
1 ovexd 2 +∞ V
2 ovexd x 2 +∞ θ x x V
3 ovexd x 2 +∞ π _ x log x θ x V
4 eqidd x 2 +∞ θ x x = x 2 +∞ θ x x
5 simpr x 2 +∞ x 2 +∞
6 2re 2
7 elicopnf 2 x 2 +∞ x 2 x
8 6 7 ax-mp x 2 +∞ x 2 x
9 5 8 sylib x 2 +∞ x 2 x
10 chtrpcl x 2 x θ x +
11 9 10 syl x 2 +∞ θ x +
12 11 rpcnne0d x 2 +∞ θ x θ x 0
13 ppinncl x 2 x π _ x
14 9 13 syl x 2 +∞ π _ x
15 14 nnrpd x 2 +∞ π _ x +
16 9 simpld x 2 +∞ x
17 1red x 2 +∞ 1
18 6 a1i x 2 +∞ 2
19 1lt2 1 < 2
20 19 a1i x 2 +∞ 1 < 2
21 9 simprd x 2 +∞ 2 x
22 17 18 16 20 21 ltletrd x 2 +∞ 1 < x
23 16 22 rplogcld x 2 +∞ log x +
24 15 23 rpmulcld x 2 +∞ π _ x log x +
25 24 rpcnne0d x 2 +∞ π _ x log x π _ x log x 0
26 recdiv θ x θ x 0 π _ x log x π _ x log x 0 1 θ x π _ x log x = π _ x log x θ x
27 12 25 26 syl2anc x 2 +∞ 1 θ x π _ x log x = π _ x log x θ x
28 27 mpteq2dva x 2 +∞ 1 θ x π _ x log x = x 2 +∞ π _ x log x θ x
29 1 2 3 4 28 offval2 x 2 +∞ θ x x × f x 2 +∞ 1 θ x π _ x log x = x 2 +∞ θ x x π _ x log x θ x
30 0red x 2 +∞ 0
31 2pos 0 < 2
32 31 a1i x 2 +∞ 0 < 2
33 30 18 16 32 21 ltletrd x 2 +∞ 0 < x
34 16 33 elrpd x 2 +∞ x +
35 34 rpcnne0d x 2 +∞ x x 0
36 24 rpcnd x 2 +∞ π _ x log x
37 dmdcan θ x θ x 0 x x 0 π _ x log x θ x x π _ x log x θ x = π _ x log x x
38 12 35 36 37 syl3anc x 2 +∞ θ x x π _ x log x θ x = π _ x log x x
39 15 rpcnd x 2 +∞ π _ x
40 23 rpcnne0d x 2 +∞ log x log x 0
41 divdiv2 π _ x x x 0 log x log x 0 π _ x x log x = π _ x log x x
42 39 35 40 41 syl3anc x 2 +∞ π _ x x log x = π _ x log x x
43 38 42 eqtr4d x 2 +∞ θ x x π _ x log x θ x = π _ x x log x
44 43 mpteq2dva x 2 +∞ θ x x π _ x log x θ x = x 2 +∞ π _ x x log x
45 29 44 eqtrd x 2 +∞ θ x x × f x 2 +∞ 1 θ x π _ x log x = x 2 +∞ π _ x x log x
46 34 ex x 2 +∞ x +
47 46 ssrdv 2 +∞ +
48 chto1ub x + θ x x 𝑂1
49 48 a1i x + θ x x 𝑂1
50 47 49 o1res2 x 2 +∞ θ x x 𝑂1
51 ax-1cn 1
52 51 a1i x 2 +∞ 1
53 11 24 rpdivcld x 2 +∞ θ x π _ x log x +
54 53 rpcnd x 2 +∞ θ x π _ x log x
55 pnfxr +∞ *
56 icossre 2 +∞ * 2 +∞
57 6 55 56 mp2an 2 +∞
58 rlimconst 2 +∞ 1 x 2 +∞ 1 1
59 57 51 58 mp2an x 2 +∞ 1 1
60 59 a1i x 2 +∞ 1 1
61 chtppilim x 2 +∞ θ x π _ x log x 1
62 61 a1i x 2 +∞ θ x π _ x log x 1
63 ax-1ne0 1 0
64 63 a1i 1 0
65 53 rpne0d x 2 +∞ θ x π _ x log x 0
66 52 54 60 62 64 65 rlimdiv x 2 +∞ 1 θ x π _ x log x 1 1
67 rlimo1 x 2 +∞ 1 θ x π _ x log x 1 1 x 2 +∞ 1 θ x π _ x log x 𝑂1
68 66 67 syl x 2 +∞ 1 θ x π _ x log x 𝑂1
69 o1mul x 2 +∞ θ x x 𝑂1 x 2 +∞ 1 θ x π _ x log x 𝑂1 x 2 +∞ θ x x × f x 2 +∞ 1 θ x π _ x log x 𝑂1
70 50 68 69 syl2anc x 2 +∞ θ x x × f x 2 +∞ 1 θ x π _ x log x 𝑂1
71 45 70 eqeltrrd x 2 +∞ π _ x x log x 𝑂1
72 71 mptru x 2 +∞ π _ x x log x 𝑂1