Metamath Proof Explorer


Theorem ppinncl

Description: Closure of the prime-counting function ppi in the positive integers. (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Assertion ppinncl A2Aπ_A

Proof

Step Hyp Ref Expression
1 ppicl Aπ_A0
2 1 adantr A2Aπ_A0
3 2 nn0zd A2Aπ_A
4 ppi2 π_2=1
5 2re 2
6 ppiwordi 2A2Aπ_2π_A
7 5 6 mp3an1 A2Aπ_2π_A
8 4 7 eqbrtrrid A2A1π_A
9 elnnz1 π_Aπ_A1π_A
10 3 8 9 sylanbrc A2Aπ_A