| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ppicl |
⊢ ( 𝐴 ∈ ℝ → ( π ‘ 𝐴 ) ∈ ℕ0 ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( π ‘ 𝐴 ) ∈ ℕ0 ) |
| 3 |
2
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( π ‘ 𝐴 ) ∈ ℤ ) |
| 4 |
|
ppi2 |
⊢ ( π ‘ 2 ) = 1 |
| 5 |
|
2re |
⊢ 2 ∈ ℝ |
| 6 |
|
ppiwordi |
⊢ ( ( 2 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( π ‘ 2 ) ≤ ( π ‘ 𝐴 ) ) |
| 7 |
5 6
|
mp3an1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( π ‘ 2 ) ≤ ( π ‘ 𝐴 ) ) |
| 8 |
4 7
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → 1 ≤ ( π ‘ 𝐴 ) ) |
| 9 |
|
elnnz1 |
⊢ ( ( π ‘ 𝐴 ) ∈ ℕ ↔ ( ( π ‘ 𝐴 ) ∈ ℤ ∧ 1 ≤ ( π ‘ 𝐴 ) ) ) |
| 10 |
3 8 9
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ≤ 𝐴 ) → ( π ‘ 𝐴 ) ∈ ℕ ) |