| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovexd |
|
| 2 |
|
2re |
|
| 3 |
|
elicopnf |
|
| 4 |
2 3
|
ax-mp |
|
| 5 |
4
|
biimpi |
|
| 6 |
5
|
simpld |
|
| 7 |
|
0red |
|
| 8 |
2
|
a1i |
|
| 9 |
|
2pos |
|
| 10 |
9
|
a1i |
|
| 11 |
5
|
simprd |
|
| 12 |
7 8 6 10 11
|
ltletrd |
|
| 13 |
6 12
|
elrpd |
|
| 14 |
|
ppinncl |
|
| 15 |
14
|
nnrpd |
|
| 16 |
5 15
|
syl |
|
| 17 |
|
1red |
|
| 18 |
|
1lt2 |
|
| 19 |
18
|
a1i |
|
| 20 |
17 8 6 19 11
|
ltletrd |
|
| 21 |
6 20
|
rplogcld |
|
| 22 |
16 21
|
rpmulcld |
|
| 23 |
13 22
|
rpdivcld |
|
| 24 |
23
|
rpcnd |
|
| 25 |
24
|
adantl |
|
| 26 |
|
chtrpcl |
|
| 27 |
5 26
|
syl |
|
| 28 |
22 27
|
rpdivcld |
|
| 29 |
28
|
rpcnd |
|
| 30 |
29
|
adantl |
|
| 31 |
6
|
recnd |
|
| 32 |
21
|
rpcnd |
|
| 33 |
16
|
rpcnd |
|
| 34 |
21
|
rpne0d |
|
| 35 |
16
|
rpne0d |
|
| 36 |
31 32 33 34 35
|
divdiv1d |
|
| 37 |
32 33
|
mulcomd |
|
| 38 |
37
|
oveq2d |
|
| 39 |
36 38
|
eqtrd |
|
| 40 |
39
|
mpteq2ia |
|
| 41 |
40
|
a1i |
|
| 42 |
27
|
rpcnd |
|
| 43 |
22
|
rpcnd |
|
| 44 |
27
|
rpne0d |
|
| 45 |
22
|
rpne0d |
|
| 46 |
42 43 44 45
|
recdivd |
|
| 47 |
46
|
mpteq2ia |
|
| 48 |
47
|
a1i |
|
| 49 |
1 25 30 41 48
|
offval2 |
|
| 50 |
31 43 42 45 44
|
dmdcan2d |
|
| 51 |
50
|
mpteq2ia |
|
| 52 |
49 51
|
eqtrdi |
|
| 53 |
|
chebbnd1 |
|
| 54 |
|
ax-1cn |
|
| 55 |
54
|
a1i |
|
| 56 |
27 22
|
rpdivcld |
|
| 57 |
56
|
adantl |
|
| 58 |
57
|
rpcnd |
|
| 59 |
6
|
ssriv |
|
| 60 |
|
rlimconst |
|
| 61 |
59 54 60
|
mp2an |
|
| 62 |
61
|
a1i |
|
| 63 |
|
chtppilim |
|
| 64 |
63
|
a1i |
|
| 65 |
|
ax-1ne0 |
|
| 66 |
65
|
a1i |
|
| 67 |
56
|
rpne0d |
|
| 68 |
67
|
adantl |
|
| 69 |
55 58 62 64 66 68
|
rlimdiv |
|
| 70 |
|
rlimo1 |
|
| 71 |
69 70
|
syl |
|
| 72 |
|
o1mul |
|
| 73 |
53 71 72
|
sylancr |
|
| 74 |
52 73
|
eqeltrrd |
|
| 75 |
74
|
mptru |
|