| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovexd |
⊢ ( ⊤ → ( 2 [,) +∞ ) ∈ V ) |
| 2 |
|
2re |
⊢ 2 ∈ ℝ |
| 3 |
|
elicopnf |
⊢ ( 2 ∈ ℝ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) ) |
| 5 |
4
|
biimpi |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) ) |
| 6 |
5
|
simpld |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ℝ ) |
| 7 |
|
0red |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 0 ∈ ℝ ) |
| 8 |
2
|
a1i |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 2 ∈ ℝ ) |
| 9 |
|
2pos |
⊢ 0 < 2 |
| 10 |
9
|
a1i |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 0 < 2 ) |
| 11 |
5
|
simprd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 2 ≤ 𝑥 ) |
| 12 |
7 8 6 10 11
|
ltletrd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 0 < 𝑥 ) |
| 13 |
6 12
|
elrpd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ℝ+ ) |
| 14 |
|
ppinncl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) → ( π ‘ 𝑥 ) ∈ ℕ ) |
| 15 |
14
|
nnrpd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) → ( π ‘ 𝑥 ) ∈ ℝ+ ) |
| 16 |
5 15
|
syl |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( π ‘ 𝑥 ) ∈ ℝ+ ) |
| 17 |
|
1red |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 1 ∈ ℝ ) |
| 18 |
|
1lt2 |
⊢ 1 < 2 |
| 19 |
18
|
a1i |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 1 < 2 ) |
| 20 |
17 8 6 19 11
|
ltletrd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 1 < 𝑥 ) |
| 21 |
6 20
|
rplogcld |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
| 22 |
16 21
|
rpmulcld |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ∈ ℝ+ ) |
| 23 |
13 22
|
rpdivcld |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( 𝑥 / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ∈ ℝ+ ) |
| 24 |
23
|
rpcnd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( 𝑥 / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 25 |
24
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( 𝑥 / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 26 |
|
chtrpcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) → ( θ ‘ 𝑥 ) ∈ ℝ+ ) |
| 27 |
5 26
|
syl |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( θ ‘ 𝑥 ) ∈ ℝ+ ) |
| 28 |
22 27
|
rpdivcld |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ∈ ℝ+ ) |
| 29 |
28
|
rpcnd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ∈ ℂ ) |
| 30 |
29
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ∈ ℂ ) |
| 31 |
6
|
recnd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ℂ ) |
| 32 |
21
|
rpcnd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 33 |
16
|
rpcnd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( π ‘ 𝑥 ) ∈ ℂ ) |
| 34 |
21
|
rpne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( log ‘ 𝑥 ) ≠ 0 ) |
| 35 |
16
|
rpne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( π ‘ 𝑥 ) ≠ 0 ) |
| 36 |
31 32 33 34 35
|
divdiv1d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( 𝑥 / ( log ‘ 𝑥 ) ) / ( π ‘ 𝑥 ) ) = ( 𝑥 / ( ( log ‘ 𝑥 ) · ( π ‘ 𝑥 ) ) ) ) |
| 37 |
32 33
|
mulcomd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( log ‘ 𝑥 ) · ( π ‘ 𝑥 ) ) = ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) |
| 38 |
37
|
oveq2d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( 𝑥 / ( ( log ‘ 𝑥 ) · ( π ‘ 𝑥 ) ) ) = ( 𝑥 / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) |
| 39 |
36 38
|
eqtrd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( 𝑥 / ( log ‘ 𝑥 ) ) / ( π ‘ 𝑥 ) ) = ( 𝑥 / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) |
| 40 |
39
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( 𝑥 / ( log ‘ 𝑥 ) ) / ( π ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) |
| 41 |
40
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( 𝑥 / ( log ‘ 𝑥 ) ) / ( π ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) |
| 42 |
27
|
rpcnd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( θ ‘ 𝑥 ) ∈ ℂ ) |
| 43 |
22
|
rpcnd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 44 |
27
|
rpne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( θ ‘ 𝑥 ) ≠ 0 ) |
| 45 |
22
|
rpne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ≠ 0 ) |
| 46 |
42 43 44 45
|
recdivd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( 1 / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) = ( ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) |
| 47 |
46
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 1 / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) |
| 48 |
47
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 1 / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ) |
| 49 |
1 25 30 41 48
|
offval2 |
⊢ ( ⊤ → ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( 𝑥 / ( log ‘ 𝑥 ) ) / ( π ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 1 / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( 𝑥 / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) · ( ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ) ) |
| 50 |
31 43 42 45 44
|
dmdcan2d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( 𝑥 / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) · ( ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) = ( 𝑥 / ( θ ‘ 𝑥 ) ) ) |
| 51 |
50
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( 𝑥 / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) · ( ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / ( θ ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( θ ‘ 𝑥 ) ) ) |
| 52 |
49 51
|
eqtrdi |
⊢ ( ⊤ → ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( 𝑥 / ( log ‘ 𝑥 ) ) / ( π ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 1 / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( θ ‘ 𝑥 ) ) ) ) |
| 53 |
|
chebbnd1 |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( 𝑥 / ( log ‘ 𝑥 ) ) / ( π ‘ 𝑥 ) ) ) ∈ 𝑂(1) |
| 54 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 55 |
54
|
a1i |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → 1 ∈ ℂ ) |
| 56 |
27 22
|
rpdivcld |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ∈ ℝ+ ) |
| 57 |
56
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ∈ ℝ+ ) |
| 58 |
57
|
rpcnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 59 |
6
|
ssriv |
⊢ ( 2 [,) +∞ ) ⊆ ℝ |
| 60 |
|
rlimconst |
⊢ ( ( ( 2 [,) +∞ ) ⊆ ℝ ∧ 1 ∈ ℂ ) → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ 1 ) ⇝𝑟 1 ) |
| 61 |
59 54 60
|
mp2an |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ 1 ) ⇝𝑟 1 |
| 62 |
61
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ 1 ) ⇝𝑟 1 ) |
| 63 |
|
chtppilim |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ⇝𝑟 1 |
| 64 |
63
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ⇝𝑟 1 ) |
| 65 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 66 |
65
|
a1i |
⊢ ( ⊤ → 1 ≠ 0 ) |
| 67 |
56
|
rpne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ≠ 0 ) |
| 68 |
67
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ≠ 0 ) |
| 69 |
55 58 62 64 66 68
|
rlimdiv |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 1 / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) ⇝𝑟 ( 1 / 1 ) ) |
| 70 |
|
rlimo1 |
⊢ ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 1 / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) ⇝𝑟 ( 1 / 1 ) → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 1 / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) ∈ 𝑂(1) ) |
| 71 |
69 70
|
syl |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 1 / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) ∈ 𝑂(1) ) |
| 72 |
|
o1mul |
⊢ ( ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( 𝑥 / ( log ‘ 𝑥 ) ) / ( π ‘ 𝑥 ) ) ) ∈ 𝑂(1) ∧ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 1 / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) ∈ 𝑂(1) ) → ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( 𝑥 / ( log ‘ 𝑥 ) ) / ( π ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 1 / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) ) ∈ 𝑂(1) ) |
| 73 |
53 71 72
|
sylancr |
⊢ ( ⊤ → ( ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( 𝑥 / ( log ‘ 𝑥 ) ) / ( π ‘ 𝑥 ) ) ) ∘f · ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 1 / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) ) ∈ 𝑂(1) ) |
| 74 |
52 73
|
eqeltrrd |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( θ ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 75 |
74
|
mptru |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( 𝑥 / ( θ ‘ 𝑥 ) ) ) ∈ 𝑂(1) |