Metamath Proof Explorer


Theorem chebbnd1

Description: The Chebyshev bound: The function ppi ( x ) is eventually lower bounded by a positive constant times x / log ( x ) . Alternatively stated, the function ( x / log ( x ) ) / ppi ( x ) is eventually bounded. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chebbnd1 x2+∞xlogxπ_x𝑂1

Proof

Step Hyp Ref Expression
1 2re 2
2 pnfxr +∞*
3 icossre 2+∞*2+∞
4 1 2 3 mp2an 2+∞
5 4 a1i 2+∞
6 elicopnf 2x2+∞x2x
7 1 6 ax-mp x2+∞x2x
8 7 simplbi x2+∞x
9 0red x2+∞0
10 1re 1
11 10 a1i x2+∞1
12 0lt1 0<1
13 12 a1i x2+∞0<1
14 1 a1i x2+∞2
15 1lt2 1<2
16 15 a1i x2+∞1<2
17 7 simprbi x2+∞2x
18 11 14 8 16 17 ltletrd x2+∞1<x
19 9 11 8 13 18 lttrd x2+∞0<x
20 8 19 elrpd x2+∞x+
21 8 18 rplogcld x2+∞logx+
22 20 21 rpdivcld x2+∞xlogx+
23 ppinncl x2xπ_x
24 7 23 sylbi x2+∞π_x
25 24 nnrpd x2+∞π_x+
26 22 25 rpdivcld x2+∞xlogxπ_x+
27 26 rpcnd x2+∞xlogxπ_x
28 27 adantl x2+∞xlogxπ_x
29 8re 8
30 29 a1i 8
31 2rp 2+
32 relogcl 2+log2
33 31 32 ax-mp log2
34 ere e
35 1 34 remulcli 2e
36 2pos 0<2
37 epos 0<e
38 1 34 36 37 mulgt0ii 0<2e
39 35 38 gt0ne0ii 2e0
40 35 39 rereccli 12e
41 33 40 resubcli log212e
42 2t1e2 21=2
43 egt2lt3 2<ee<3
44 43 simpli 2<e
45 10 1 34 lttri 1<22<e1<e
46 15 44 45 mp2an 1<e
47 10 34 1 ltmul2i 0<21<e21<2e
48 36 47 ax-mp 1<e21<2e
49 46 48 mpbi 21<2e
50 42 49 eqbrtrri 2<2e
51 1 35 36 38 ltrecii 2<2e12e<12
52 50 51 mpbi 12e<12
53 43 simpri e<3
54 3lt4 3<4
55 3re 3
56 4re 4
57 34 55 56 lttri e<33<4e<4
58 53 54 57 mp2an e<4
59 epr e+
60 4pos 0<4
61 56 60 elrpii 4+
62 logltb e+4+e<4loge<log4
63 59 61 62 mp2an e<4loge<log4
64 58 63 mpbi loge<log4
65 loge loge=1
66 sq2 22=4
67 66 fveq2i log22=log4
68 2z 2
69 relogexp 2+2log22=2log2
70 31 68 69 mp2an log22=2log2
71 67 70 eqtr3i log4=2log2
72 64 65 71 3brtr3i 1<2log2
73 1 36 pm3.2i 20<2
74 ltdivmul 1log220<212<log21<2log2
75 10 33 73 74 mp3an 12<log21<2log2
76 72 75 mpbir 12<log2
77 halfre 12
78 40 77 33 lttri 12e<1212<log212e<log2
79 52 76 78 mp2an 12e<log2
80 40 33 posdifi 12e<log20<log212e
81 79 80 mpbi 0<log212e
82 41 81 elrpii log212e+
83 rerpdivcl 2log212e+2log212e
84 1 82 83 mp2an 2log212e
85 84 a1i 2log212e
86 rpre xlogxπ_x+xlogxπ_x
87 rpge0 xlogxπ_x+0xlogxπ_x
88 86 87 absidd xlogxπ_x+xlogxπ_x=xlogxπ_x
89 26 88 syl x2+∞xlogxπ_x=xlogxπ_x
90 89 adantr x2+∞8xxlogxπ_x=xlogxπ_x
91 eqid x2=x2
92 91 chebbnd1lem3 x8xlog212e2<π_xlogxx
93 8 92 sylan x2+∞8xlog212e2<π_xlogxx
94 1 recni 2
95 2ne0 20
96 41 recni log212e
97 41 81 gt0ne0ii log212e0
98 recdiv 220log212elog212e012log212e=log212e2
99 94 95 96 97 98 mp4an 12log212e=log212e2
100 99 a1i x2+∞8x12log212e=log212e2
101 22 rpcnd x2+∞xlogx
102 24 nncnd x2+∞π_x
103 22 rpne0d x2+∞xlogx0
104 24 nnne0d x2+∞π_x0
105 101 102 103 104 recdivd x2+∞1xlogxπ_x=π_xxlogx
106 102 101 103 divrecd x2+∞π_xxlogx=π_x1xlogx
107 20 rpcnne0d x2+∞xx0
108 21 rpcnne0d x2+∞logxlogx0
109 recdiv xx0logxlogx01xlogx=logxx
110 107 108 109 syl2anc x2+∞1xlogx=logxx
111 110 oveq2d x2+∞π_x1xlogx=π_xlogxx
112 105 106 111 3eqtrd x2+∞1xlogxπ_x=π_xlogxx
113 112 adantr x2+∞8x1xlogxπ_x=π_xlogxx
114 93 100 113 3brtr4d x2+∞8x12log212e<1xlogxπ_x
115 26 adantr x2+∞8xxlogxπ_x+
116 elrp xlogxπ_x+xlogxπ_x0<xlogxπ_x
117 1 41 36 81 divgt0ii 0<2log212e
118 ltrec xlogxπ_x0<xlogxπ_x2log212e0<2log212exlogxπ_x<2log212e12log212e<1xlogxπ_x
119 84 117 118 mpanr12 xlogxπ_x0<xlogxπ_xxlogxπ_x<2log212e12log212e<1xlogxπ_x
120 116 119 sylbi xlogxπ_x+xlogxπ_x<2log212e12log212e<1xlogxπ_x
121 115 120 syl x2+∞8xxlogxπ_x<2log212e12log212e<1xlogxπ_x
122 114 121 mpbird x2+∞8xxlogxπ_x<2log212e
123 115 rpred x2+∞8xxlogxπ_x
124 ltle xlogxπ_x2log212exlogxπ_x<2log212exlogxπ_x2log212e
125 123 84 124 sylancl x2+∞8xxlogxπ_x<2log212exlogxπ_x2log212e
126 122 125 mpd x2+∞8xxlogxπ_x2log212e
127 90 126 eqbrtrd x2+∞8xxlogxπ_x2log212e
128 127 adantl x2+∞8xxlogxπ_x2log212e
129 5 28 30 85 128 elo1d x2+∞xlogxπ_x𝑂1
130 129 mptru x2+∞xlogxπ_x𝑂1