| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2re |
|- 2 e. RR |
| 2 |
|
pnfxr |
|- +oo e. RR* |
| 3 |
|
icossre |
|- ( ( 2 e. RR /\ +oo e. RR* ) -> ( 2 [,) +oo ) C_ RR ) |
| 4 |
1 2 3
|
mp2an |
|- ( 2 [,) +oo ) C_ RR |
| 5 |
4
|
a1i |
|- ( T. -> ( 2 [,) +oo ) C_ RR ) |
| 6 |
|
elicopnf |
|- ( 2 e. RR -> ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) ) |
| 7 |
1 6
|
ax-mp |
|- ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) |
| 8 |
7
|
simplbi |
|- ( x e. ( 2 [,) +oo ) -> x e. RR ) |
| 9 |
|
0red |
|- ( x e. ( 2 [,) +oo ) -> 0 e. RR ) |
| 10 |
|
1re |
|- 1 e. RR |
| 11 |
10
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 1 e. RR ) |
| 12 |
|
0lt1 |
|- 0 < 1 |
| 13 |
12
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 0 < 1 ) |
| 14 |
1
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 2 e. RR ) |
| 15 |
|
1lt2 |
|- 1 < 2 |
| 16 |
15
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 1 < 2 ) |
| 17 |
7
|
simprbi |
|- ( x e. ( 2 [,) +oo ) -> 2 <_ x ) |
| 18 |
11 14 8 16 17
|
ltletrd |
|- ( x e. ( 2 [,) +oo ) -> 1 < x ) |
| 19 |
9 11 8 13 18
|
lttrd |
|- ( x e. ( 2 [,) +oo ) -> 0 < x ) |
| 20 |
8 19
|
elrpd |
|- ( x e. ( 2 [,) +oo ) -> x e. RR+ ) |
| 21 |
8 18
|
rplogcld |
|- ( x e. ( 2 [,) +oo ) -> ( log ` x ) e. RR+ ) |
| 22 |
20 21
|
rpdivcld |
|- ( x e. ( 2 [,) +oo ) -> ( x / ( log ` x ) ) e. RR+ ) |
| 23 |
|
ppinncl |
|- ( ( x e. RR /\ 2 <_ x ) -> ( ppi ` x ) e. NN ) |
| 24 |
7 23
|
sylbi |
|- ( x e. ( 2 [,) +oo ) -> ( ppi ` x ) e. NN ) |
| 25 |
24
|
nnrpd |
|- ( x e. ( 2 [,) +oo ) -> ( ppi ` x ) e. RR+ ) |
| 26 |
22 25
|
rpdivcld |
|- ( x e. ( 2 [,) +oo ) -> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR+ ) |
| 27 |
26
|
rpcnd |
|- ( x e. ( 2 [,) +oo ) -> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. CC ) |
| 28 |
27
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. CC ) |
| 29 |
|
8re |
|- 8 e. RR |
| 30 |
29
|
a1i |
|- ( T. -> 8 e. RR ) |
| 31 |
|
2rp |
|- 2 e. RR+ |
| 32 |
|
relogcl |
|- ( 2 e. RR+ -> ( log ` 2 ) e. RR ) |
| 33 |
31 32
|
ax-mp |
|- ( log ` 2 ) e. RR |
| 34 |
|
ere |
|- _e e. RR |
| 35 |
1 34
|
remulcli |
|- ( 2 x. _e ) e. RR |
| 36 |
|
2pos |
|- 0 < 2 |
| 37 |
|
epos |
|- 0 < _e |
| 38 |
1 34 36 37
|
mulgt0ii |
|- 0 < ( 2 x. _e ) |
| 39 |
35 38
|
gt0ne0ii |
|- ( 2 x. _e ) =/= 0 |
| 40 |
35 39
|
rereccli |
|- ( 1 / ( 2 x. _e ) ) e. RR |
| 41 |
33 40
|
resubcli |
|- ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) e. RR |
| 42 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 43 |
|
egt2lt3 |
|- ( 2 < _e /\ _e < 3 ) |
| 44 |
43
|
simpli |
|- 2 < _e |
| 45 |
10 1 34
|
lttri |
|- ( ( 1 < 2 /\ 2 < _e ) -> 1 < _e ) |
| 46 |
15 44 45
|
mp2an |
|- 1 < _e |
| 47 |
10 34 1
|
ltmul2i |
|- ( 0 < 2 -> ( 1 < _e <-> ( 2 x. 1 ) < ( 2 x. _e ) ) ) |
| 48 |
36 47
|
ax-mp |
|- ( 1 < _e <-> ( 2 x. 1 ) < ( 2 x. _e ) ) |
| 49 |
46 48
|
mpbi |
|- ( 2 x. 1 ) < ( 2 x. _e ) |
| 50 |
42 49
|
eqbrtrri |
|- 2 < ( 2 x. _e ) |
| 51 |
1 35 36 38
|
ltrecii |
|- ( 2 < ( 2 x. _e ) <-> ( 1 / ( 2 x. _e ) ) < ( 1 / 2 ) ) |
| 52 |
50 51
|
mpbi |
|- ( 1 / ( 2 x. _e ) ) < ( 1 / 2 ) |
| 53 |
43
|
simpri |
|- _e < 3 |
| 54 |
|
3lt4 |
|- 3 < 4 |
| 55 |
|
3re |
|- 3 e. RR |
| 56 |
|
4re |
|- 4 e. RR |
| 57 |
34 55 56
|
lttri |
|- ( ( _e < 3 /\ 3 < 4 ) -> _e < 4 ) |
| 58 |
53 54 57
|
mp2an |
|- _e < 4 |
| 59 |
|
epr |
|- _e e. RR+ |
| 60 |
|
4pos |
|- 0 < 4 |
| 61 |
56 60
|
elrpii |
|- 4 e. RR+ |
| 62 |
|
logltb |
|- ( ( _e e. RR+ /\ 4 e. RR+ ) -> ( _e < 4 <-> ( log ` _e ) < ( log ` 4 ) ) ) |
| 63 |
59 61 62
|
mp2an |
|- ( _e < 4 <-> ( log ` _e ) < ( log ` 4 ) ) |
| 64 |
58 63
|
mpbi |
|- ( log ` _e ) < ( log ` 4 ) |
| 65 |
|
loge |
|- ( log ` _e ) = 1 |
| 66 |
|
sq2 |
|- ( 2 ^ 2 ) = 4 |
| 67 |
66
|
fveq2i |
|- ( log ` ( 2 ^ 2 ) ) = ( log ` 4 ) |
| 68 |
|
2z |
|- 2 e. ZZ |
| 69 |
|
relogexp |
|- ( ( 2 e. RR+ /\ 2 e. ZZ ) -> ( log ` ( 2 ^ 2 ) ) = ( 2 x. ( log ` 2 ) ) ) |
| 70 |
31 68 69
|
mp2an |
|- ( log ` ( 2 ^ 2 ) ) = ( 2 x. ( log ` 2 ) ) |
| 71 |
67 70
|
eqtr3i |
|- ( log ` 4 ) = ( 2 x. ( log ` 2 ) ) |
| 72 |
64 65 71
|
3brtr3i |
|- 1 < ( 2 x. ( log ` 2 ) ) |
| 73 |
1 36
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 74 |
|
ltdivmul |
|- ( ( 1 e. RR /\ ( log ` 2 ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 1 / 2 ) < ( log ` 2 ) <-> 1 < ( 2 x. ( log ` 2 ) ) ) ) |
| 75 |
10 33 73 74
|
mp3an |
|- ( ( 1 / 2 ) < ( log ` 2 ) <-> 1 < ( 2 x. ( log ` 2 ) ) ) |
| 76 |
72 75
|
mpbir |
|- ( 1 / 2 ) < ( log ` 2 ) |
| 77 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 78 |
40 77 33
|
lttri |
|- ( ( ( 1 / ( 2 x. _e ) ) < ( 1 / 2 ) /\ ( 1 / 2 ) < ( log ` 2 ) ) -> ( 1 / ( 2 x. _e ) ) < ( log ` 2 ) ) |
| 79 |
52 76 78
|
mp2an |
|- ( 1 / ( 2 x. _e ) ) < ( log ` 2 ) |
| 80 |
40 33
|
posdifi |
|- ( ( 1 / ( 2 x. _e ) ) < ( log ` 2 ) <-> 0 < ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) |
| 81 |
79 80
|
mpbi |
|- 0 < ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) |
| 82 |
41 81
|
elrpii |
|- ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) e. RR+ |
| 83 |
|
rerpdivcl |
|- ( ( 2 e. RR /\ ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) e. RR+ ) -> ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) e. RR ) |
| 84 |
1 82 83
|
mp2an |
|- ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) e. RR |
| 85 |
84
|
a1i |
|- ( T. -> ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) e. RR ) |
| 86 |
|
rpre |
|- ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR+ -> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR ) |
| 87 |
|
rpge0 |
|- ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR+ -> 0 <_ ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) |
| 88 |
86 87
|
absidd |
|- ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR+ -> ( abs ` ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) = ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) |
| 89 |
26 88
|
syl |
|- ( x e. ( 2 [,) +oo ) -> ( abs ` ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) = ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) |
| 90 |
89
|
adantr |
|- ( ( x e. ( 2 [,) +oo ) /\ 8 <_ x ) -> ( abs ` ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) = ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) |
| 91 |
|
eqid |
|- ( |_ ` ( x / 2 ) ) = ( |_ ` ( x / 2 ) ) |
| 92 |
91
|
chebbnd1lem3 |
|- ( ( x e. RR /\ 8 <_ x ) -> ( ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) / 2 ) < ( ( ppi ` x ) x. ( ( log ` x ) / x ) ) ) |
| 93 |
8 92
|
sylan |
|- ( ( x e. ( 2 [,) +oo ) /\ 8 <_ x ) -> ( ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) / 2 ) < ( ( ppi ` x ) x. ( ( log ` x ) / x ) ) ) |
| 94 |
1
|
recni |
|- 2 e. CC |
| 95 |
|
2ne0 |
|- 2 =/= 0 |
| 96 |
41
|
recni |
|- ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) e. CC |
| 97 |
41 81
|
gt0ne0ii |
|- ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) =/= 0 |
| 98 |
|
recdiv |
|- ( ( ( 2 e. CC /\ 2 =/= 0 ) /\ ( ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) e. CC /\ ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) =/= 0 ) ) -> ( 1 / ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) = ( ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) / 2 ) ) |
| 99 |
94 95 96 97 98
|
mp4an |
|- ( 1 / ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) = ( ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) / 2 ) |
| 100 |
99
|
a1i |
|- ( ( x e. ( 2 [,) +oo ) /\ 8 <_ x ) -> ( 1 / ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) = ( ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) / 2 ) ) |
| 101 |
22
|
rpcnd |
|- ( x e. ( 2 [,) +oo ) -> ( x / ( log ` x ) ) e. CC ) |
| 102 |
24
|
nncnd |
|- ( x e. ( 2 [,) +oo ) -> ( ppi ` x ) e. CC ) |
| 103 |
22
|
rpne0d |
|- ( x e. ( 2 [,) +oo ) -> ( x / ( log ` x ) ) =/= 0 ) |
| 104 |
24
|
nnne0d |
|- ( x e. ( 2 [,) +oo ) -> ( ppi ` x ) =/= 0 ) |
| 105 |
101 102 103 104
|
recdivd |
|- ( x e. ( 2 [,) +oo ) -> ( 1 / ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) = ( ( ppi ` x ) / ( x / ( log ` x ) ) ) ) |
| 106 |
102 101 103
|
divrecd |
|- ( x e. ( 2 [,) +oo ) -> ( ( ppi ` x ) / ( x / ( log ` x ) ) ) = ( ( ppi ` x ) x. ( 1 / ( x / ( log ` x ) ) ) ) ) |
| 107 |
20
|
rpcnne0d |
|- ( x e. ( 2 [,) +oo ) -> ( x e. CC /\ x =/= 0 ) ) |
| 108 |
21
|
rpcnne0d |
|- ( x e. ( 2 [,) +oo ) -> ( ( log ` x ) e. CC /\ ( log ` x ) =/= 0 ) ) |
| 109 |
|
recdiv |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( ( log ` x ) e. CC /\ ( log ` x ) =/= 0 ) ) -> ( 1 / ( x / ( log ` x ) ) ) = ( ( log ` x ) / x ) ) |
| 110 |
107 108 109
|
syl2anc |
|- ( x e. ( 2 [,) +oo ) -> ( 1 / ( x / ( log ` x ) ) ) = ( ( log ` x ) / x ) ) |
| 111 |
110
|
oveq2d |
|- ( x e. ( 2 [,) +oo ) -> ( ( ppi ` x ) x. ( 1 / ( x / ( log ` x ) ) ) ) = ( ( ppi ` x ) x. ( ( log ` x ) / x ) ) ) |
| 112 |
105 106 111
|
3eqtrd |
|- ( x e. ( 2 [,) +oo ) -> ( 1 / ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) = ( ( ppi ` x ) x. ( ( log ` x ) / x ) ) ) |
| 113 |
112
|
adantr |
|- ( ( x e. ( 2 [,) +oo ) /\ 8 <_ x ) -> ( 1 / ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) = ( ( ppi ` x ) x. ( ( log ` x ) / x ) ) ) |
| 114 |
93 100 113
|
3brtr4d |
|- ( ( x e. ( 2 [,) +oo ) /\ 8 <_ x ) -> ( 1 / ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) < ( 1 / ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) ) |
| 115 |
26
|
adantr |
|- ( ( x e. ( 2 [,) +oo ) /\ 8 <_ x ) -> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR+ ) |
| 116 |
|
elrp |
|- ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR+ <-> ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR /\ 0 < ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) ) |
| 117 |
1 41 36 81
|
divgt0ii |
|- 0 < ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) |
| 118 |
|
ltrec |
|- ( ( ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR /\ 0 < ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) /\ ( ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) e. RR /\ 0 < ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) ) -> ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) < ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) <-> ( 1 / ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) < ( 1 / ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) ) ) |
| 119 |
84 117 118
|
mpanr12 |
|- ( ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR /\ 0 < ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) -> ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) < ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) <-> ( 1 / ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) < ( 1 / ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) ) ) |
| 120 |
116 119
|
sylbi |
|- ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR+ -> ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) < ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) <-> ( 1 / ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) < ( 1 / ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) ) ) |
| 121 |
115 120
|
syl |
|- ( ( x e. ( 2 [,) +oo ) /\ 8 <_ x ) -> ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) < ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) <-> ( 1 / ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) < ( 1 / ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) ) ) |
| 122 |
114 121
|
mpbird |
|- ( ( x e. ( 2 [,) +oo ) /\ 8 <_ x ) -> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) < ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) |
| 123 |
115
|
rpred |
|- ( ( x e. ( 2 [,) +oo ) /\ 8 <_ x ) -> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR ) |
| 124 |
|
ltle |
|- ( ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) e. RR /\ ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) e. RR ) -> ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) < ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) -> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) <_ ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) ) |
| 125 |
123 84 124
|
sylancl |
|- ( ( x e. ( 2 [,) +oo ) /\ 8 <_ x ) -> ( ( ( x / ( log ` x ) ) / ( ppi ` x ) ) < ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) -> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) <_ ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) ) |
| 126 |
122 125
|
mpd |
|- ( ( x e. ( 2 [,) +oo ) /\ 8 <_ x ) -> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) <_ ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) |
| 127 |
90 126
|
eqbrtrd |
|- ( ( x e. ( 2 [,) +oo ) /\ 8 <_ x ) -> ( abs ` ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) <_ ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) |
| 128 |
127
|
adantl |
|- ( ( T. /\ ( x e. ( 2 [,) +oo ) /\ 8 <_ x ) ) -> ( abs ` ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) <_ ( 2 / ( ( log ` 2 ) - ( 1 / ( 2 x. _e ) ) ) ) ) |
| 129 |
5 28 30 85 128
|
elo1d |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) e. O(1) ) |
| 130 |
129
|
mptru |
|- ( x e. ( 2 [,) +oo ) |-> ( ( x / ( log ` x ) ) / ( ppi ` x ) ) ) e. O(1) |