Metamath Proof Explorer


Theorem ltrec

Description: The reciprocal of both sides of 'less than'. (Contributed by NM, 26-Sep-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion ltrec A0<AB0<BA<B1B<1A

Proof

Step Hyp Ref Expression
1 1red A0<AB0<B1
2 simprl A0<AB0<BB
3 simpll A0<AB0<BA
4 simplr A0<AB0<B0<A
5 ltmuldiv 1BA0<A1A<B1<BA
6 1 2 3 4 5 syl112anc A0<AB0<B1A<B1<BA
7 3 recnd A0<AB0<BA
8 7 mullidd A0<AB0<B1A=A
9 8 breq1d A0<AB0<B1A<BA<B
10 2 recnd A0<AB0<BB
11 4 gt0ne0d A0<AB0<BA0
12 10 7 11 divrecd A0<AB0<BBA=B1A
13 12 breq2d A0<AB0<B1<BA1<B1A
14 6 9 13 3bitr3d A0<AB0<BA<B1<B1A
15 3 11 rereccld A0<AB0<B1A
16 simprr A0<AB0<B0<B
17 ltdivmul 11AB0<B1B<1A1<B1A
18 1 15 2 16 17 syl112anc A0<AB0<B1B<1A1<B1A
19 14 18 bitr4d A0<AB0<BA<B1B<1A