Metamath Proof Explorer


Theorem egt2lt3

Description: Euler's constant _e = 2.71828... is strictly bounded below by 2 and above by 3. (Contributed by NM, 28-Nov-2008) (Revised by Mario Carneiro, 29-Apr-2014)

Ref Expression
Assertion egt2lt3 2 < e e < 3

Proof

Step Hyp Ref Expression
1 eqid n 2 1 2 n = n 2 1 2 n
2 eqid n 0 1 n ! = n 0 1 n !
3 1 2 ege2le3 2 e e 3
4 3 simpli 2 e
5 eirr e
6 5 neli ¬ e
7 nnq e e
8 6 7 mto ¬ e
9 2nn 2
10 eleq1 e = 2 e 2
11 9 10 mpbiri e = 2 e
12 11 necon3bi ¬ e e 2
13 8 12 ax-mp e 2
14 2re 2
15 ere e
16 14 15 ltleni 2 < e 2 e e 2
17 4 13 16 mpbir2an 2 < e
18 3 simpri e 3
19 3nn 3
20 eleq1 3 = e 3 e
21 19 20 mpbii 3 = e e
22 21 necon3bi ¬ e 3 e
23 8 22 ax-mp 3 e
24 3re 3
25 15 24 ltleni e < 3 e 3 3 e
26 18 23 25 mpbir2an e < 3
27 17 26 pm3.2i 2 < e e < 3