Metamath Proof Explorer


Theorem eirr

Description: _e is irrational. (Contributed by Paul Chapman, 9-Feb-2008) (Proof shortened by Mario Carneiro, 29-Apr-2014)

Ref Expression
Assertion eirr e

Proof

Step Hyp Ref Expression
1 eqid n01n!=n01n!
2 simpll pqe=pqp
3 simplr pqe=pqq
4 simpr pqe=pqe=pq
5 1 2 3 4 eirrlem ¬pqe=pq
6 5 imnani pq¬e=pq
7 6 nrexdv p¬qe=pq
8 7 nrex ¬pqe=pq
9 elq epqe=pq
10 8 9 mtbir ¬e
11 10 nelir e