Metamath Proof Explorer


Theorem chtlepsi

Description: The first Chebyshev function is less than the second. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion chtlepsi
|- ( A e. RR -> ( theta ` A ) <_ ( psi ` A ) )

Proof

Step Hyp Ref Expression
1 fzfid
 |-  ( A e. RR -> ( 1 ... ( |_ ` A ) ) e. Fin )
2 elfznn
 |-  ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN )
3 2 adantl
 |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN )
4 vmacl
 |-  ( n e. NN -> ( Lam ` n ) e. RR )
5 3 4 syl
 |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) e. RR )
6 vmage0
 |-  ( n e. NN -> 0 <_ ( Lam ` n ) )
7 3 6 syl
 |-  ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> 0 <_ ( Lam ` n ) )
8 ppisval
 |-  ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) )
9 inss1
 |-  ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C_ ( 2 ... ( |_ ` A ) )
10 2eluzge1
 |-  2 e. ( ZZ>= ` 1 )
11 fzss1
 |-  ( 2 e. ( ZZ>= ` 1 ) -> ( 2 ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` A ) ) )
12 10 11 mp1i
 |-  ( A e. RR -> ( 2 ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` A ) ) )
13 9 12 sstrid
 |-  ( A e. RR -> ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C_ ( 1 ... ( |_ ` A ) ) )
14 8 13 eqsstrd
 |-  ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) C_ ( 1 ... ( |_ ` A ) ) )
15 1 5 7 14 fsumless
 |-  ( A e. RR -> sum_ n e. ( ( 0 [,] A ) i^i Prime ) ( Lam ` n ) <_ sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) )
16 chtval
 |-  ( A e. RR -> ( theta ` A ) = sum_ n e. ( ( 0 [,] A ) i^i Prime ) ( log ` n ) )
17 simpr
 |-  ( ( A e. RR /\ n e. ( ( 0 [,] A ) i^i Prime ) ) -> n e. ( ( 0 [,] A ) i^i Prime ) )
18 17 elin2d
 |-  ( ( A e. RR /\ n e. ( ( 0 [,] A ) i^i Prime ) ) -> n e. Prime )
19 vmaprm
 |-  ( n e. Prime -> ( Lam ` n ) = ( log ` n ) )
20 18 19 syl
 |-  ( ( A e. RR /\ n e. ( ( 0 [,] A ) i^i Prime ) ) -> ( Lam ` n ) = ( log ` n ) )
21 20 sumeq2dv
 |-  ( A e. RR -> sum_ n e. ( ( 0 [,] A ) i^i Prime ) ( Lam ` n ) = sum_ n e. ( ( 0 [,] A ) i^i Prime ) ( log ` n ) )
22 16 21 eqtr4d
 |-  ( A e. RR -> ( theta ` A ) = sum_ n e. ( ( 0 [,] A ) i^i Prime ) ( Lam ` n ) )
23 chpval
 |-  ( A e. RR -> ( psi ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) )
24 15 22 23 3brtr4d
 |-  ( A e. RR -> ( theta ` A ) <_ ( psi ` A ) )